Skip to main content
European Commission logo print header

Indirect Excitons: Fundamental Physics and Applications


Indirect excitons are bosonic quasi-particles in semiconductors with unique properties: they have long lifetime and spin-relaxation time, can travel over large distances before recombination, can be cooled down to low temperatures and form a quantum gas, and can be controlled by voltage in-situ. Due to these properties, they form a model system both for the studies of fundamental properties of light and matter and for the development of conceptually new excitonic devices.
Our consortium is composed of 9 strong academic groups in Europe and USA, supported by 4 industrial partners. It brings together the critical mass of the human resources, research expertise, experience, and facilities required to achieve a decisive breakthrough in the interdisciplinary field of indirect excitons, on the boundary of electronics, optics, photonics, and spintronics.
We propose to explore the potential of indirect excitons (1) for the studies of fundamental physics of cold bosons in solid state materials, (2) for the development of novel principles for optoelectronic devices, and (3) for the training of a new generation of researchers. We propose a multidisciplinary training program aimed at formation of young researchers with solid background in physics of light-matter coupling and quantum effects in solid state, experts in excitonic systems able to design, process, and optimize the future excitonic devices for practical applications. The training in academic institutes will be combined with secondments to the major optoelectronic industries.

Call for proposal

See other projects for this call


Rue michel ange 3
75794 Paris

See on map

Ile-de-France Ile-de-France Paris
Activity type
Research Organisations
EU contribution
No data

Participants (5)