Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Beam-steered Reconfigurable Optical-Wireless System for Energy-efficient communication

Objetivo

The exploding need for wireless communication capacity is getting beyond the capabilities of traditional radio techniques. The available radio bandwidth gets exhausted, wireless devices start interfering with each other in this overcrowded radio spectrum, and high-capacity radio is power-hungry. Optics can offer a breakthrough, by means of the huge bandwidth of its spectrum, together with intelligent networking.
Our ambition is to make a giant step forward in wireless communications, by a revolutionary combination of novel free-space optical beam diversity techniques, an intelligently routed optical fibre platform, and flexible radio communication techniques. This hybrid technology will increase the available wireless bandwidth by several orders of magnitude, while operating very energy-efficiently.
We will investigate the use of narrowly confined optical pencil beams aided by optical beam tracking for the downstream part of the communication channel, and radio technology for upstream. The optical beams allow extremely high data rates (10-100 Gbit/s) as their carrier frequency is orders of magnitude larger than that of radio waves, and can serve many users without interference due to their spatial confinement. Moreover, they reduce the power consumption by their excellent directivity. In the (less demanding) upstream path, we will explore low-power highly-integrated radio technology for offering capacities of 3-30 Gbit/s. We combine these with intelligent optical routing techniques in the fibre backbone network, and with user localisation and tracking capabilities using advanced upstream radio techniques, in order to deliver ultra-broadband services to every user, tailored for his device. We will explore an autonomic network management and control system to orchestrate the heterogeneous resources and evolve these as the user’s needs, context, device capabilities and energy requirements change.

Convocatoria de propuestas

ERC-2011-ADG_20110209
Consulte otros proyectos de esta convocatoria

Régimen de financiación

ERC-AG - ERC Advanced Grant

Institución de acogida

TECHNISCHE UNIVERSITEIT EINDHOVEN
Aportación de la UE
€ 2 430 352,80
Dirección
GROENE LOPER 3
5612 AE Eindhoven
Países Bajos

Ver en el mapa

Región
Zuid-Nederland Noord-Brabant Zuidoost-Noord-Brabant
Tipo de actividad
Higher or Secondary Education Establishments
Investigador principal
Antonius Marcellus Jozef Koonen (Prof.)
Contacto administrativo
J.C. Van Wevelingen (Ms.)
Enlaces
Coste total
Sin datos

Beneficiarios (1)