Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS
Inhalt archiviert am 2024-06-18

Beam-steered Reconfigurable Optical-Wireless System for Energy-efficient communication

Ziel

The exploding need for wireless communication capacity is getting beyond the capabilities of traditional radio techniques. The available radio bandwidth gets exhausted, wireless devices start interfering with each other in this overcrowded radio spectrum, and high-capacity radio is power-hungry. Optics can offer a breakthrough, by means of the huge bandwidth of its spectrum, together with intelligent networking.
Our ambition is to make a giant step forward in wireless communications, by a revolutionary combination of novel free-space optical beam diversity techniques, an intelligently routed optical fibre platform, and flexible radio communication techniques. This hybrid technology will increase the available wireless bandwidth by several orders of magnitude, while operating very energy-efficiently.
We will investigate the use of narrowly confined optical pencil beams aided by optical beam tracking for the downstream part of the communication channel, and radio technology for upstream. The optical beams allow extremely high data rates (10-100 Gbit/s) as their carrier frequency is orders of magnitude larger than that of radio waves, and can serve many users without interference due to their spatial confinement. Moreover, they reduce the power consumption by their excellent directivity. In the (less demanding) upstream path, we will explore low-power highly-integrated radio technology for offering capacities of 3-30 Gbit/s. We combine these with intelligent optical routing techniques in the fibre backbone network, and with user localisation and tracking capabilities using advanced upstream radio techniques, in order to deliver ultra-broadband services to every user, tailored for his device. We will explore an autonomic network management and control system to orchestrate the heterogeneous resources and evolve these as the user’s needs, context, device capabilities and energy requirements change.

Aufforderung zur Vorschlagseinreichung

ERC-2011-ADG_20110209
Andere Projekte für diesen Aufruf anzeigen

Gastgebende Einrichtung

TECHNISCHE UNIVERSITEIT EINDHOVEN
EU-Beitrag
€ 2 430 352,80
Adresse
GROENE LOPER 3
5612 AE Eindhoven
Niederlande

Auf der Karte ansehen

Region
Zuid-Nederland Noord-Brabant Zuidoost-Noord-Brabant
Aktivitätstyp
Higher or Secondary Education Establishments
Hauptforscher
Antonius Marcellus Jozef Koonen (Prof.)
Kontakt Verwaltung
J.C. Van Wevelingen (Ms.)
Links
Gesamtkosten
Keine Daten

Begünstigte (1)