Objetivo
Machine learning's goal is to devise algorithms that improve with experience. Currently, experience is largely defined to be the amount of available data. Unfortunately, acquiring data can be time consuming (e.g. annotating documents), monetarily expensive (e.g. genetic testing), physically invasive (e.g. collecting a tissue sample) or unavailable in sufficient quantities (e.g. data about rare
diseases). For some tasks, this makes it challenging to obtain the quantities of data necessary to build a sufficiently accurate predictive model. Machine learning algorithms are applicable to many
domains, but cannot generalize across different domains because of the underlying assumption that the training (used to learn the model) and test (used to evaluate the model) data come from the same
distribution. However, in the real world this is often not the case. People are much more adept at handling this than machines and are even able to reapply knowledge learned in one domain to an
entirely different one. Yet standard machine learning approaches are unable to do this. Computationally, the missing link is the ability to discover structural regularities that apply to many different domains, irrespective of their superficial descriptions. This is arguably the biggest gap between current machine learning systems and humans. To address this problem, algorithms must be able to perform deep transfer, which involves generalizing across entirely different domains (i.e. between domains with different objects, classes, properties and relations). Few learning algorithms are able to do this. In this project, we will attempt to develop a well-founded, fully automatic approach to deep transfer that discerns complex structural regularities and determines which of these
properties are likely to apply to a given target task. Deep transfer offers a fundamentally different and novel paradigm for acquiring experience: exploiting data from other, possibly very different, tasks.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: https://op.europa.eu/es/web/eu-vocabularies/euroscivoc.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: https://op.europa.eu/es/web/eu-vocabularies/euroscivoc.
- ciencias naturales informática y ciencias de la información inteligencia artificial aprendizaje automático
Para utilizar esta función, debe iniciar sesión o registrarse
Le pedimos disculpas, pero se ha producido un error inesperado durante la ejecución.
Necesita estar autentificado. Puede que su sesión haya finalizado.
Gracias por su comentario. En breve recibirá un correo electrónico para confirmar el envío. Si ha seleccionado que se le notifique sobre el estado del informe, también se le contactará cuando el estado del informe cambie.
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
FP7-PEOPLE-2011-CIG
Consulte otros proyectos de esta convocatoria
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
MC-CIG - Support for training and career development of researcher (CIG)
Coordinador
3000 Leuven
Bélgica
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.