Obiettivo
Machine learning's goal is to devise algorithms that improve with experience. Currently, experience is largely defined to be the amount of available data. Unfortunately, acquiring data can be time consuming (e.g. annotating documents), monetarily expensive (e.g. genetic testing), physically invasive (e.g. collecting a tissue sample) or unavailable in sufficient quantities (e.g. data about rare
diseases). For some tasks, this makes it challenging to obtain the quantities of data necessary to build a sufficiently accurate predictive model. Machine learning algorithms are applicable to many
domains, but cannot generalize across different domains because of the underlying assumption that the training (used to learn the model) and test (used to evaluate the model) data come from the same
distribution. However, in the real world this is often not the case. People are much more adept at handling this than machines and are even able to reapply knowledge learned in one domain to an
entirely different one. Yet standard machine learning approaches are unable to do this. Computationally, the missing link is the ability to discover structural regularities that apply to many different domains, irrespective of their superficial descriptions. This is arguably the biggest gap between current machine learning systems and humans. To address this problem, algorithms must be able to perform deep transfer, which involves generalizing across entirely different domains (i.e. between domains with different objects, classes, properties and relations). Few learning algorithms are able to do this. In this project, we will attempt to develop a well-founded, fully automatic approach to deep transfer that discerns complex structural regularities and determines which of these
properties are likely to apply to a given target task. Deep transfer offers a fundamentally different and novel paradigm for acquiring experience: exploiting data from other, possibly very different, tasks.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/it/web/eu-vocabularies/euroscivoc.
- scienze naturali informatica e scienze dell'informazione intelligenza artificiale apprendimento automatico
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Siamo spiacenti… si è verificato un errore inatteso durante l’esecuzione.
È necessario essere autenticati. La sessione potrebbe essere scaduta.
Grazie per il tuo feedback. Riceverai presto un'e-mail di conferma dell'invio. Se hai scelto di ricevere una notifica sullo stato della segnalazione, sarai contattato anche quando lo stato della segnalazione cambierà.
Programma(i)
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.
Argomento(i)
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.
Invito a presentare proposte
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.
FP7-PEOPLE-2011-CIG
Vedi altri progetti per questo bando
Meccanismo di finanziamento
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.
MC-CIG - Support for training and career development of researcher (CIG)
Coordinatore
3000 Leuven
Belgio
I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.