Objective
Through animal domestication humans profoundly altered their relationship with nature, controlling the breeding of their major food sources for material, social or symbolic profit. Understanding this complex process is a compelling research aim. There is a need to develop new high-resolution genetic tools to put flesh on the bones of this two-millenium long transition. These will take advantage of very recent advances: targeted next generation DNA sequencing, high throughput screening of expertly provenanced archaeological samples, and emerging knowledge of modern cattle, sheep and goat genome science plus their genetic geographies. Combining these, this proposal will develop an ancient DNA data matrix that will be unparalleled in archaeological science. These data will unlock the key genetic changes that accompany the domestic state and the breeding structures that are a consequence of human management. It will also identify the wild and proto-domestic populations that later herds emerge from. A more precise geography and timing of the key changes will enable richer contextualising inform our assessement of why these changes take place. The 10,000 year matrix for each species will function as a standard spatiotemporal reference grid on which any subsequent bone or animal artefact may be placed i.e. via genetic postcoding. Exceptional discontinuities in the matrix will highlight points of strong historical interest such as the emergence of new trade networks, migrations and periods of economic turbulence - perhaps driven by climate fluctuations or plagues. The final work objectives will focus on diachronic sample assemblages selected to have particular import for both historical events and transitions in material culture. For example, manuscript vellum samples will give a uniquely dated series that will enable correlation of genetic change with historical studies of the timing and impact of past animal plagues (e.g. in C 14th and C 18th Europe).
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- natural sciencesbiological sciencesgeneticsDNA
- humanitieshistory and archaeologyarchaeologyarchaeometry
- agricultural sciencesanimal and dairy sciencedomestic animalsanimal husbandry
- natural sciencesbiological sciencesgeneticsgenomes
You need to log in or register to use this function
Call for proposal
ERC-2011-ADG_20110406
See other projects for this call
Funding Scheme
ERC-AG - ERC Advanced GrantHost institution
D02 CX56 Dublin
Ireland