Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-28

Cohomology of Bianchi Groups and Arithmetic

Objetivo

"The goal of this proposal is to make a significant impact on the career of the researcher by diversifying his knowledge and skills through five training objectives and two exciting research projects on the cohomology of Bianchi groups.
Bianchi groups are groups of the form SL(2,R) where R is the ring of integers of an imaginary quadratic fields. They arise naturally in the study of hyperbolic 3-manifolds and are central to the theory of Bianchi modular forms, that is, modular forms for GL(2) over imaginary quadratic fields.

The research goal of this proposal is to make progress in our understanding of a central open problem in the theory of Bianchi modular forms: ``What is the arithmetic role of the torsion classes in the cohomology of congruence subgroups of Bianchi groups ?”. More generally, torsion classes in the cohomology of arithmetic groups present a phenomenon that is important to understand for Langlands Programme and the case of Bianchi groups is the simplest one that this phenomenon can be seen in. So any progress that will be made through this proposal is expected to have affect on the torsion phenomenon in general.

We will attack this problem via two projects. The first project aims to reveal and study a relationship between 2-dimensional even mod p Galois representations of Q and torsion classes, while the second project aims to prove cases of a fundamental conjecture about the existence of 2-dimensional mod p Galois representations of imaginary quadratic fields associated to torsion classes.

The training goal of our proposal is to equip the researcher further with advanced tools and knowledge while strengthening his existing skills. Through five training objectives, we aim to diversify the theoretical aspects of the research portfolio of the researcher by immersing him to the arithmetic theory of Siegel modular forms of genus 2, Jacquet-Langlands correspondence and its applications, p-adic modular forms and p-adic L-functions and others."

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP7-PEOPLE-2011-IEF
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MC-IEF - Intra-European Fellowships (IEF)

Coordinador

UNIVERSITY OF WARWICK
Aportación de la UE
€ 270 145,80
Dirección
KIRBY CORNER ROAD UNIVERSITY HOUSE
CV4 8UW COVENTRY
Reino Unido

Ver en el mapa

Región
West Midlands (England) West Midlands Coventry
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0