Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-28

Hilbert's 13th Problem

Objetivo

The aim of this fellowship is to enable Dr Christopher Good, as Scientist in Charge, and Dr Ziqin Feng, as Researcher, to carry out some innovative and mutually beneficial research utilizing their complementary skill sets.

The 13th Problem from Hilbert's famous list asks whether every continuous (respectively smooth) function of three variables can be written as a superposition (or, in modern parlance, composition) of continuous (respectively smooth) functions of two variables. Hilbert conjectured that the answer to this problem was `no.' However, in 1957, Kolmogorov together with his student Arnold gave a positive solution in the continuous case: every continuous function of n variables taken from the closed unit interval can be represented as a linear superposition of one-variable functions and the two-variable function addition. One might expect this result to have applications (for example to data analysis), since it allows for multi-dimensional functions to be expressed as `simpler' functions of one variable and addition. However, whilst being of great theoretical interest, Kolmogorov's result is highly non-constructive and does not obviously allow for this. Together with Professor Paul Gartside, Feng has made highly non-trivial extensions to Kolmogorov's theorem that suggest ways around these restrictions. This project aims to realize potential applications by providing improved algorithms, implementing the extensions in high-level computer code.
Vitushkin gave a negative answer to the smooth (differentiable) version of Hilbert's 13th problem in 1954, proving, in particular, that there are continuously differentiable functions of three variables which can not be written as a superposition of continuously differentiable functions of two variables. The project also aims to investigate just how smooth one can take the functions arising in Kolmogorov's theorem to be. Questions along these lines will be addressed through combinatorical analysis of Vitushkin's work, the topology of critical points, and approximation theory in function spaces.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP7-PEOPLE-2011-IIF
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MC-IIF - International Incoming Fellowships (IIF)

Coordinador

THE UNIVERSITY OF BIRMINGHAM
Aportación de la UE
€ 209 033,40
Dirección
Edgbaston
B15 2TT Birmingham
Reino Unido

Ver en el mapa

Región
West Midlands (England) West Midlands Birmingham
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0