Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Isoperimetric Inequalities and Integral Geometry

Objetivo

"Among several trends in convex geometric analysis, two have undergone an explosive development in recent years: the theory of affine isoperimetric and analytic inequalities, and the enhanced understanding of fundamental concepts of the subject as a whole lent by the theory of valuations. The proposal concerns both of these trends.

The connections between convex body valued valuations and isoperimetric inequalities (like, the Petty projection inequality or affine Sobolev inequalities and their Lp extensions) have attracted the interest of first-rate research groups in the world. However, the underlying bigger picture behind these strong relations has yet to be discovered. A goal of the proposed research program is to systematically exploit the ""valuations point of view"" to reshape not only the way (affine) isoperimetric inequalities are thought of and applied but also the way these powerful inequalities are established.

Through the introduction of new algebraic structures on the space of translation invariant scalar valued valuations substantial inroads have been made towards a fuller understanding of the integral geometry of groups acting transitively on the sphere. An aim of the proposed program is to introduce a corresponding algebraic machinery in the theory of convex body valued valuations which would provide the means to attack long standing major open problems in the area of affine isoperimetric inequalities.

It is the PI's strong belief that over the next years it will become clear that many classical inequalities from affine geometry hold in a much more general setting than is currently understood. This will not only lead to the discovery of new inequalities but also should reveal the full strength of affine inequalities compared to their counterparts from Euclidean geometry. The proposed research goals of this ERC grant proposal would therefore represent a huge step towards advancing these developments that will alter two main subjects at the same time."

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

ERC-2012-StG_20111012
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-SG - ERC Starting Grant

Institución de acogida

TECHNISCHE UNIVERSITAET WIEN
Aportación de la UE
€ 982 461,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (1)

Mi folleto 0 0