Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Isoperimetric Inequalities and Integral Geometry

Objectif

"Among several trends in convex geometric analysis, two have undergone an explosive development in recent years: the theory of affine isoperimetric and analytic inequalities, and the enhanced understanding of fundamental concepts of the subject as a whole lent by the theory of valuations. The proposal concerns both of these trends.

The connections between convex body valued valuations and isoperimetric inequalities (like, the Petty projection inequality or affine Sobolev inequalities and their Lp extensions) have attracted the interest of first-rate research groups in the world. However, the underlying bigger picture behind these strong relations has yet to be discovered. A goal of the proposed research program is to systematically exploit the ""valuations point of view"" to reshape not only the way (affine) isoperimetric inequalities are thought of and applied but also the way these powerful inequalities are established.

Through the introduction of new algebraic structures on the space of translation invariant scalar valued valuations substantial inroads have been made towards a fuller understanding of the integral geometry of groups acting transitively on the sphere. An aim of the proposed program is to introduce a corresponding algebraic machinery in the theory of convex body valued valuations which would provide the means to attack long standing major open problems in the area of affine isoperimetric inequalities.

It is the PI's strong belief that over the next years it will become clear that many classical inequalities from affine geometry hold in a much more general setting than is currently understood. This will not only lead to the discovery of new inequalities but also should reveal the full strength of affine inequalities compared to their counterparts from Euclidean geometry. The proposed research goals of this ERC grant proposal would therefore represent a huge step towards advancing these developments that will alter two main subjects at the same time."

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

ERC-2012-StG_20111012
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-SG - ERC Starting Grant

Institution d’accueil

TECHNISCHE UNIVERSITAET WIEN
Contribution de l’UE
€ 982 461,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Bénéficiaires (1)

Mon livret 0 0