Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Computational Multiscale Neuron Mechanics

Objetivo

The last few years have seen a growing interest for computational cell mechanics. This field encompasses different scales ranging from individual monomers, cytoskeleton constituents, up to the full cell. Its focus, fueled by the development of interdisciplinary collaborative efforts between engineering, computer science and biology, until recently relatively isolated, has allowed for important breakthroughs in biomedicine, bioengineering or even neurology. However, the natural “knowledge barrier” between fields often leads to the use of one numerical tool for one bioengineering application with a limited understanding of either the tool or the field of application itself. Few groups, to date, have the knowledge and expertise to properly avoid both pits. Within the computational mechanics realm, new methods aim at bridging scale and modeling techniques ranging from density functional theory up to continuum modeling on very large scale parallel supercomputers. To the best of the knowledge of the author, a thorough and comprehensive research campaign aiming at bridging scales from proteins to the cell level while including its interaction with its surrounding media/stimulus is yet to be done. Among all cells, neurons are at the heart of tremendous medical challenges (TBI, Alzheimer, etc.). In nearly all of these challenges, the intrinsic coupling between mechanical and chemical mechanisms in neuron is of drastic relevance. I thus propose here the development of a neuron model constituted of length-scale dedicated numerical techniques, adequately bridged together. As an illustration of its usability, the model will be used for two specific applications: neurite growth and electrical-chemical-mechanical coupling in neurons. This multiscale computational framework will ultimately be made available to the bio- medical community to enhance their knowledge on neuron deformation, growth, electrosignaling and thus, Alzheimer’s disease, cancer or TBI.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

ERC-2012-StG_20111012
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-SG - ERC Starting Grant

Institución de acogida

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Aportación de la UE
€ 1 128 960,00
Dirección
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Reino Unido

Ver en el mapa

Región
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (1)

Mi folleto 0 0