Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Machine Learning for Personalized Medicine

Objetivo

"Over the last decade, enormous progress has been made on recording the health state of an individual patient down to the molecular level of gene activity and genomic information – even sequencing a patient’s genome for less than 1000 dollars is no longer an unrealistic goal. However, the ultimate hope to use all this information for personalized medicine, that is to tailor medical treatment to the needs of an individual, remains largely unfulfilled.
To turn the vision of personalized medicine into reality, many methodological problems remain to be solved: there is a lack of methods that allow us to gain a causal understanding of the underlying disease mechanisms, including gene-gene and gene-environment interactions. Similarly, there is an urgent need for integration of the heterogeneous patient data currently available, for improved and robust biomarker discovery for disease diagnosis, prognosis and therapy outcome prediction.
The field of machine learning, which tries to detect patterns, rules and statistical dependencies in large datasets, has also witnessed dramatic progress over the last decade and has had a profound impact on the Internet. Amongst others, advanced methods for high-dimensional feature selection, causality inference, and data integration have been developed or are topics of current research. These techniques address many of the key methodological challenges that personalized medicine faces today and keep it from rising to the next level.

Despite this rich potential of machine learning in personalized medicine, its impact on data-driven medicine remains low, due to a lack of experts with knowledge in both machine learning and in statistical genetics. Our ITN aims to close this gap by bringing together leading European research institutes in Machine Learning and Statistical Genetics, both from the private and public sector, to train 14 early stage researchers."

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP7-PEOPLE-2012-ITN
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MC-ITN - Networks for Initial Training (ITN)

Coordinador

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Aportación de la UE
€ 595 024,06
Dirección
Raemistrasse 101
8092 Zuerich
Suiza

Ver en el mapa

Región
Schweiz/Suisse/Svizzera Zürich Zürich
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Participantes (10)

Mi folleto 0 0