Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Machine Learning for Personalized Medicine

Objectif

"Over the last decade, enormous progress has been made on recording the health state of an individual patient down to the molecular level of gene activity and genomic information – even sequencing a patient’s genome for less than 1000 dollars is no longer an unrealistic goal. However, the ultimate hope to use all this information for personalized medicine, that is to tailor medical treatment to the needs of an individual, remains largely unfulfilled.
To turn the vision of personalized medicine into reality, many methodological problems remain to be solved: there is a lack of methods that allow us to gain a causal understanding of the underlying disease mechanisms, including gene-gene and gene-environment interactions. Similarly, there is an urgent need for integration of the heterogeneous patient data currently available, for improved and robust biomarker discovery for disease diagnosis, prognosis and therapy outcome prediction.
The field of machine learning, which tries to detect patterns, rules and statistical dependencies in large datasets, has also witnessed dramatic progress over the last decade and has had a profound impact on the Internet. Amongst others, advanced methods for high-dimensional feature selection, causality inference, and data integration have been developed or are topics of current research. These techniques address many of the key methodological challenges that personalized medicine faces today and keep it from rising to the next level.

Despite this rich potential of machine learning in personalized medicine, its impact on data-driven medicine remains low, due to a lack of experts with knowledge in both machine learning and in statistical genetics. Our ITN aims to close this gap by bringing together leading European research institutes in Machine Learning and Statistical Genetics, both from the private and public sector, to train 14 early stage researchers."

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-2012-ITN
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-ITN - Networks for Initial Training (ITN)

Coordinateur

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Contribution de l’UE
€ 595 024,06
Adresse
Raemistrasse 101
8092 Zuerich
Suisse

Voir sur la carte

Région
Schweiz/Suisse/Svizzera Zürich Zürich
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Participants (10)

Mon livret 0 0