CORDIS - EU research results
CORDIS

Graphene-based Devices and Circuits for RF Applications

Project description


Very advanced nanoelectronic components: design, engineering, technology and manufacturability
Demonstration of the proof-of-concept of novel graphene-based electronic devices operating at terahertz (THz) frequencies
GRADE is a project focusing on advanced RTD activities necessary to demonstrate the proof-of-concept of novel graphene-based electronic devices operating at terahertz (THz) frequencies. We propose two different concepts with specific advantages. These are Graphene field effect transistors (GFET), that use graphene as a high-mobility transistor channel and the alternative "graphene base transistors" (GBT), that are novel hot-electron devices that use graphene sandwiched between two insulating layers, each in turn covered by a metal layer. Considering the unique high frequency characteristics of the GFET and the GBT, the consortium envisions innovative applications in communication, automotive, security and environmental monitoring. Low power wireless communication systems operating above 100Gbit/s or handheld portable THz sensor systems for detection of dangerous agents seem feasible with active devices operating in the THz regime. To be affordable for a broad range of consumers, THz devices must be scalable and integrated with silicon technology. GBTs and GFETs can fulfil this requirement. This project enables the demonstration and assessment of these novel device concepts for future THz systems, and prepares their transition to semiconductor manufacturing. The GRADE consortium consists of four academic partners, of which two have a strong experimental background and excellent processing facilities and one is focused on physics-based modelling and simulation and one specialized in compact modelling and circuit design; one research institute, which provides a professionally run pilot production clean room, state of the art processing and an entry point for graphene into manufacturing; and one global semiconductor manufacturer willing to push their capabilities to enable the fabrication of integrated graphene RF circuits, including the integration on SiC and co-integration with pre-fabricated CMOS wafers.\\n

 

GRADE is a three-year STREP proposal focused on advanced RTD activities necessary to demonstrate the proof-of-concept of novel graphene-based electronic devices operating at terahertz (THz) frequencies. We propose two different concepts with specific advantages. Graphene field effect transistors (GFET) use graphene as a high-mobility transistor channel. Alternative "graphene base transistors" (GBT) are novel hot-electron devices that use graphene sandwiched between two insulating layers, each in turn covered by a metal layer. Considering the unique high frequency characteristics of the GFET and the GBT, the consortium envisions innovative applications in communication, automotive, security and environmental monitoring. Low power wireless communication systems operating above 100Gbit/s or handheld portable THz sensor systems for detection of dangerous agents seem feasible with active devices operating in the THz regime. To be affordable for a broad range of consumers, THz devices must be scalable and integrated with silicon technology. GBTs and GFETs can fulfill this requirement. The proposed research enables the demonstration and assessment of these novel device concepts for future THz systems, and prepares their transition to semiconductor manufacturing.To achieve these goals, GRADE unites a powerful consortium:Four academic partners, two of them with a strong experimental background and excellent processing facilities, one focused on physics-based modelling and simulation and one specialized in compact modelling and circuit design.One research institute, which provides a professionally run pilot production clean room, state of the art processing and an entry point for graphene into manufacturing.One global semiconductor manufacturer willing to push their capabilities to enable the fabrication of integrated graphene RF circuits, including the integration on SiC and co-integration with pre-fabricated CMOS wafers.

Call for proposal

FP7-ICT-2011-8
See other projects for this call

Coordinator

UNIVERSITAET SIEGEN
EU contribution
€ 378 220,00
Address
ADOLF REICHWEIN STRASSE 2A
57076 Siegen
Germany

See on map

Region
Nordrhein-Westfalen Arnsberg Siegen-Wittgenstein
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Sascha Fiedler (Mr.)
Links
Total cost
No data

Participants (13)