Objective
The efficient, reproducible synthesis of bespoke organic nanoparticles of controlled size, morphology and surface functionality in concentrated solution is widely regarded to be a formidable technical challenge. However, recent advances by the Principal Investigator (PI) suggest that this important problem can be addressed by polymerisation-induced self-assembly (PISA) directly in aqueous solution to form a range of diblock copolymer 'nano-objects'. The proposal combines three synergistic themes within the PI's group: (i) controlled-structure water-soluble polymers, (ii) living radical polymerisation and (iii) novel polymer colloids. More specifically, the PI will work closely with four post-doctoral scientists and a PhD student to design a series of diblock copolymer nanoparticles with either spherical, worm-like or vesicular morphologies under dispersion polymerisation conditions in either water, alcohol or n-alkanes. This exciting and timely fundamental research programme will produce world-leading scientific innovation. Moreover, the targeted nanoparticles will be evaluated for various potential applications, such as (i) intracellular delivery of various biomolecules (e.g. DNA, proteins, antibodies), (ii) readily sterilisable biocompatible hydrogels, (iii) bespoke Pickering emulsiifiers and foam stabilisers, (iv) tough nanocomposite monoliths, (v) new components for next-generation paints, (vi) novel boundary lubricants for high performance engine oils. Informal collaborations with four academic partners and four industrial companies will ensure that maximum scientific value and economic impact is extracted from this ambitious work programme. All research findings will be published in top-quality scientific journals and the PI will provide appropriate mentoring to inspire his research team to become the next generation of creative, productive scientists for the EC.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- natural sciencesphysical sciencescondensed matter physicssoft matter physics
- natural sciencesbiological sciencesbiochemistrybiomoleculesproteins
- natural scienceschemical sciencespolymer sciences
- natural scienceschemical sciencesorganic chemistryalcohols
- engineering and technologynanotechnologynano-materials
You need to log in or register to use this function
Call for proposal
ERC-2012-ADG_20120216
See other projects for this call
Funding Scheme
ERC-AG - ERC Advanced GrantHost institution
S10 2TN Sheffield
United Kingdom