Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Biologically-Inspired Massively-Parallel Computation

Objective

"We aim to establish a world-leading research capability in Europe for advancing novel models of asynchronous computation based upon principles inspired by brain function. This work will accelerate progress towards an understanding of how the potential of brain-inspired many-core architectures may be harnessed. The results will include new brain-inspired models of asynchronous computation and new brain- inspired approaches to fault-tolerance and reliability in complex computer systems.

Many-core processors are now established as the way forward for computing from embedded systems to supercomputers. An emerging problem with leading-edge silicon technology is a reduction in the yield and reliability of modern processors due to high variability in the manufacture of the components and interconnect as transistor geometries shrink towards atomic scales. We are faced with the longstanding problem of how to make use of a potentially large array of parallel processors, but with the new constraint that the individual elements are the system are inherently unreliable.

The human brain remains as one of the great frontiers of science – how does this organ upon which we all depend so critically actually do its job? A great deal is known about the underlying technology – the neuron – and we can observe large-scale brain activity through techniques such as magnetic resonance imaging, but this knowledge barely starts to tell us how the brain works. Something is happening at the intermediate levels of processing that we have yet to begin to understand, but the essence of the brain's massively-parallel information processing capabilities and robustness to component failure lies in these intermediate levels.

These two issues draws us towards two high-level research questions:

• Can our growing understanding of brain function point the way to more efficient parallel, fault-tolerant computing?
• Can massively parallel computing resources accelerate our understanding of brain function"

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-ADG_20120216
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

THE UNIVERSITY OF MANCHESTER
EU contribution
€ 2 399 761,00
Address
OXFORD ROAD
M13 9PL Manchester
United Kingdom

See on map

Region
North West (England) Greater Manchester Manchester
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0