Objective
The objective of this proposal is to tackle two of the greatest challenges in quantum chemistry: (i) extending the applicability of highly accurate wave function methods to large molecular systems, and (ii) developing accurate and robust multi-reference methods that can be used for studying important but very difficult problems in transition metal chemistry, catalysis, and photochemistry. Solutions to these problems have now come within reach due to three advances we recently reported: first, the steep scaling of the computational cost with molecular size can be reduced to linear by exploiting the short-range character of electron correlation (local correlation methods). Second, the accuracy, efficiency, and robustness of these local correlation methods can be strongly improved by new tensor decomposition approaches and the inclusion of terms depending explicitly on the inter-electronic distances (F12 methods). Third, the development of highly complex electronic structure theories can be greatly facilitated and accelerated by new automated tensor network evaluation techniques. We are certain that by combining and generalizing these advances the long-standing problems (i) and (ii) can be solved. We will focus especially on highly scalable algorithms in order to use massively parallel computer systems efficiently. For linear-scaling methods this means that the size of the molecules that can be treated in a fixed time will grow linearly with the number of available processors. We will furthermore explore new multi-reference ansätze and implement analytical energy gradients and response properties for local methods. Hybrid and embedding methods to account for solvent and environment effects will also be investigated. It is our priority to make our new methods as easy to use, robust, and widely applicable as possible. We believe that they will open entirely new horizons for innumerable applications in chemistry, physics, biology, and materials science.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences chemical sciences physical chemistry photochemistry
- natural sciences chemical sciences physical chemistry quantum chemistry
- natural sciences chemical sciences catalysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
ERC-2012-ADG_20120216
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Host institution
70174 Stuttgart
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.