Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Axon survival: the role of protein synthesis

Objective

Neurons make long-distance connections with synaptic targets via axons. These axons survive throughout the lifetime of an organism, often many years in mammals, yet how axons are maintained is not fully understood. Recently, we provided in vivo evidence that local mRNA translation in mature axons is required for their maintenance. This new finding, along with in vitro work from other groups, indicates that promoting axonal protein synthesis is a key mechanism by which trophic factors act to prevent axon degeneration. Here we propose a program of research to investigate the importance of ribosomal proteins (RPs) in axon maintenance and degeneration. The rationale for this is fourfold. First, recent genome-wide studies of axonal transcriptomes have revealed that protein synthesis (including RP mRNAs) is the highest functional category in several neuronal types. Second, some RPs have evolved extra-ribosomal functions that include signalling, such as 67LR which acts both as a cell surface receptor for laminin and as a RP. Third, mutations in different RPs in vertebrates cause unexpectedly specific defects, such as the loss of optic axons. Fourth, preliminary results show that RP mRNAs are translated in optic axons in response to trophic factors. Collectively these findings lead us to propose that locally synthesized RPs play a role in axon maintenance through either ribosomal or extra-ribosomal function. To pursue this proposal, we will perform unbiased screens and functional assays using an array of experimental approaches and animal models. By gaining an understanding of how local RP synthesis contributes to axon survival, our studies have the potential to provide novel insights into how components conventionally associated with a housekeeping role (translation) are linked to axon degeneration. Our findings could provide new directions for developing therapeutic tools for neurodegenerative disorders and may have an impact on more diverse areas of biology and disease.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2012-ADG_20120314
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-AG - ERC Advanced Grant

Host institution

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
EU contribution
€ 2 426 572,80
Address
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
United Kingdom

See on map

Region
East of England East Anglia Cambridgeshire CC
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0