European Commission logo
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

Light-driven Chemical Synthesis using Cytochrome P450s

Objective

The goal of this proposed research initiative is to engineer chloroplasts into production units for high value bio-active natural products. The first aim is to re-route the biosynthetic pathways for these compounds into the chloroplast and to boost compound formation by optimizing and channeling reducing power from photosystem I into to the energy demanding steps. By these measures we aim to overcome the inherent limitations in plants to channel photosynthetic fixed carbon and reducing power directly into production of desired bioactive natural products. Our production targets are diterpenoids with the anti-cancer drug ingenol-3-angelate and the adenylyl cyclase activator forskolin as the two chosen test compounds. Formation of the complicated hydroxylated core structures of these compounds is catalyzed by diterpenoid synthases and cytochrome P450s. These will be identified and expressed in the chloroplast. The ultimate aim is to construct a single supramolecular enzyme complex effectively using solar energy to produce complex diterpenoids. This will be accomplished by tethering the terpenoid synthases and the key P450 enzymes directly to the photosystem I complex using some of the small membrane spanning subunits of photosystem I as membrane anchors. The experimental systems used will initially be transient expression in tobacco and then move to stably transformed moss (Physcomitrella patens). The production system is built on the “share your parts” principle of synthetic biology and the aim is to construct a modular ‘tool box’ as template for tailoring the synthesis of a whole range of valuable bioactive diterpenoids. Typically, these are difficult to obtain because they are produced in very low amounts in plants difficult to cultivate. The proposal opens up entirely new research horizons and removes current bottlenecks in industrial exploitation. The technology holds the promise of true sustainability as it is driven by solar power and CO2.

Call for proposal

ERC-2012-ADG_20120314
See other projects for this call

Host institution

KOBENHAVNS UNIVERSITET
EU contribution
€ 2 499 699,00
Address
NORREGADE 10
1165 Kobenhavn
Denmark

See on map

Region
Danmark Hovedstaden Byen København
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Tine Mathiesen (Mrs.)
Principal investigator
Birger Lindberg Møller (Prof.)
Links
Total cost
No data

Beneficiaries (1)