Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-05-30

INtegrating Social Evolution and Metabolic Ecology

Objective

Over 3.5 billion years, life has evolved towards ever-greater size and complexity. At critical transitions, this occurred when entities formed collectives (e.g. cells into multicellular bodies, individuals into eusocial societies, species into obligate mutualisms). Towards explaining this trend, I will integrate two emerging perspectives—social evolution and metabolic ecology—using scaling laws to explore energy efficiencies gained as organisms crossed these major transitions. Extending my research on the physiology of fungus-growing ant societies, I will use a metabolic currency to study the evolutionary trend towards ever-larger agricultural systems. Ants (tribe Attini) began cultivating fungi 50 million ago and have since evolved into over 230 species common across the new world tropics. My research has suggested that these farming ant societies, like those of humans, face efficiency constraints related to metabolism. I found that species with larger colony-farms tend to become increasingly efficient, producing larger fungus crops while losing relatively less energy to metabolic respiration. I will extend advanced techniques I pioneered, using a cutting edge respirometry system to link performance and operational size at each level of organization, from newly-mated queens that found colonies, to societies of sterile workers cultivating fungus, and then whole colony-farms that use public health strategies to protect fungal symbionts. Decades of research by my host, Prof. Boomsma, have made fungus-growing ants a model system in biology, rivaling the honeybee, and I will use this system to ask fundamental integrative questions in biology. I will also transfer knowledge by organizing and teaching three courses—a respirometry course (2014) and a tropical field course in Panama (2013 & 2015). A return phase with Prof. Rob Dunn (USA) will cement international collaboration and enable high impact outreach in Europe, building on his massive citizen-science infrastructure.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2012-IIF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIF - International Incoming Fellowships (IIF)

Coordinator

KOBENHAVNS UNIVERSITET
EU contribution
€ 221 154,60
Address
NORREGADE 10
1165 KOBENHAVN
Denmark

See on map

Region
Danmark Hovedstaden Byen København
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0