Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Interplay between metamorphism and deformation in the Earth’s lithosphere

Objective

A key to understanding the processes operating in the outer part of the Earth is to look at the metamorphic rocks produced in orogenic belts. These rocks now exhumed to the Earth’s surface provide a record of what they experienced, if only they can be correctly interpreted.
The recent use of high resolution devices has revealed the three-dimensional size, shape, composition and distribution of microstructural features in metamorphic rocks down to the nanometre-scale. The new observations show that mechanically maintained pressure variations can be significant (~1 GPa) even on a micro-scale. However, there is currently no satisfactory thermodynamic methodology for a quantitative interpretation of systems with such pressure variations in metamorphic rocks. Ignoring such pressure variations in petrological analysis can lead to errors in depth estimates that are comparable to the typical thickness of the whole continental crust. Such an error may then significantly influence the quality of geodynamic reconstructions.
Here, I propose to develop a revolutionary theoretical and computational method to understand microstructures that reflect pressure variations, based on the chemical and mechanical properties of their constituent minerals. Using the novel theoretical approach, I and my team will perform 3D numerical simulations and give the criteria to correctly understand the key microstructures.
This emerging multi-disciplinary research will provide a quantitative and physically-based framework for interpreting common microstructures in metamorphic rocks. Furthermore, the new approach will not only make a critical contribution to understanding the interplay between metamorphic processes and deformation on the grain scale, but it will also form the basis for a new generation of models for application to large-scale geological scenarios. The results of the project will thus significantly increase our understanding of key processes in the Earth’s lithosphere.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
EU contribution
€ 1 499 820,00
Address
Raemistrasse 101
8092 Zuerich
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0