Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Multidimensional Spectroscopy at the Attosecond frontier

Objective

The invention of multidimensional spectroscopy was a major leap in nuclear magnetic resonance. Comparable schemes in the optical regime have led to significant advances in our understanding of ultrafast dynamics in complex molecular systems. Currently, these multidimensional approaches are the most powerful and complete measurement schemes for resolving molecular dynamics on femtosecond time scales. The goal of this project is to advance the basic ideas and concepts of multi-dimensional spectroscopy to the forefront of ultrafast science – the attosecond (10-18 second) regime.
Attosecond science is a young field of research that has rapidly evolved over the past decade. Leading researchers in the field have opened a door into a new area of research that allows the observation of multi-electrons dynamics on their own natural time scale. Attosecond science lies at the heart of strong field light-matter interactions. These interactions can lead to the generation of attosecond duration XUV and energetic electron pulses, thereby providing researchers with the tools for studying a broad range of fundamental phenomena in Nature which evolve on an attosecond time scale. While an extensive theoretical effort has been invested in studying these phenomena, their experimental observation remains limited. The main limitation is set by the complexity of the interaction that offers numerous channels in which electronic dynamics can evolve.
The proposed research program aims at introducing multidimensional spectroscopy in the attosecond regime, thus revealing the underlying complex dynamics behind many attosecond scale phenomena. Integrating state of the art experimental schemes, supported by advanced theoretical analysis, will lead to the discoveries of new phenomena previously inaccessible in many experimental observations. The impact of the proposed research is beyond attosecond spectroscopy – opening new paths in resolving phenomena at the extreme nonlinear limit.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-StG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-SG - ERC Starting Grant

Host institution

WEIZMANN INSTITUTE OF SCIENCE
EU contribution
€ 1 283 683,00
Address
HERZL STREET 234
7610001 Rehovot
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (2)

My booklet 0 0