Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Convective Heat Transport and Stellar Magnetism

Objetivo

"Magnetism plays a profound role in stars and planets. In the Sun, magnetic fields are ultimately responsible for solar flares and coronal mass ejections that can impact our technological society. Earth's own magnetic field partly shields us from these events, but solar storms can still interrupt satellite communications, disrupt power grids, and pose a danger to astronauts on spacewalks. More generally, magnetic fields partly control the rotational evolution of stars, likely impact the habitability of extrasolar planets, and may modify the sizes and internal structures of
low-mass stars and gaseous planets. In all cases, the magnetism is generally thought to arise from a convective dynamo -- but a detailed theoretical understanding of this process, and its influence on the overall evolution of stars and planets, has remained elusive. Particularly fascinating observational puzzles have recently come from the study of low-mass M-dwarf stars: the most numerous type of stars in our galaxy and perhaps the most likely to host habitable planets.

We therefore propose to study how stars and sub-stellar objects build magnetic fields using 3-D magnetohydrodynamic simulations, and to quantify the effects of those fields on stellar structure and evolution. Using the Anelastic Spherical Harmonic (ASH) and Compressible Spherical Segment (CSS) codes, we will examine (a) how global magnetic field generation in these stars depends upon parameters like stellar mass, rotation rate, and the presence of a stable core, and (b) how the deep convection and magnetism imprints through (and is shaped by) the near-surface layers of these objects. We will (c) determine the impact of the resulting fields on the convective transport of heat and angular momentum, incorporate our results into state of the art 1-D evolutionary models of stars, and explore the consequences for stellar evolution. Separately, we will (d) develop and maintain a public database of 3-D convective dynamo models."

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

ERC-2013-StG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-SG - ERC Starting Grant

Institución de acogida

THE UNIVERSITY OF EXETER
Aportación de la UE
€ 1 469 070,00
Dirección
THE QUEEN'S DRIVE NORTHCOTE HOUSE
EX4 4QJ Exeter
Reino Unido

Ver en el mapa

Región
South West (England) Devon Devon CC
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos

Beneficiarios (1)

Mi folleto 0 0