Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-29

Modular and classical approaches to Diophantine Equations

Objetivo

Since ancient Greeks, mathematicians have been interested in what we now call Diophantine problems. A Diophantine problem is an equation where one is interested in finding solutions that are whole numbers.
The most famous Diophantine problem of all time is Fermat's Last Theorem. This problem attracted the attention of huge numbers of both professional and amateur mathematicians for over 350 years, and was finally solved by Andrew Wiles in 1994. We call the approach taken in the proof of Fermat's Last Theorem, the 'Modular Approach'. We call the earlier (pre-Wiles) approaches, the classical approaches.
The EU is the world leader in the classical approaches, but not in the 'modular approach'.
The aims of this project include
(i) To improve our understanding of the information given by the modular approach.
(ii) To set out a coherent strategy for supplementing the local information given by the modular approach with the global information obtained from classical approaches, such as Mordell-Weil groups, hypergeom etric methods, Runge's method, etc.
(iii) To identify and solve interesting and outstanding Diophantine problems that can be tackled by the innovations introduced in (i), (ii) The project will involve extensive collaborations. It will be a link between lea ding British research groups and those centres of excellence in Diophantine equations in France, Germany, Spain, The Netherlands, Greece, Croatia, Hungary and elsewhere in Europe.
These collaborations and interactions will reduce the fragmentation of the subject across Europe. Dr. Siksek is a leading European expert on Diophantine equations (and the modular approach in particular), who has been away for 7 years. He has, in collaboration with other European researchers, used the modular approach to solve several famous open Diophantine problems. His return to the UK and reintegration into European research will help take the EU a step closer to becoming the leader in the 'modular approach'.

Ámbito científico (EuroSciVoc)

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP6-2004-MOBILITY-12
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

IRG - Marie Curie actions-International re-integration grants

Coordinador

UNIVERSITY OF WARWICK
Aportación de la UE
Sin datos
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0