Objective
The aim of this project is to make significant improvements to thermal barrier coating (TBC) systems used for gas turbine applications by introducing a number of key innovations.TBC's consist of an oxidation resistant (Co,Ni)CrAlY bond coat and a insulat ing yttria-stabilized zirconia top coat. The top coat is deposited by air plasma-spraying (APS) or by electron-beam physical vapour deposition (EB-PVD). The use of the much more expensive EB-PVD process has been due largely to the columnar structure of t he coatings resulting in improved strain tolerance and improved reliability. The in-service life of these coatings is now around 8000 hours. Conventional APS coatings are deposited onto a random, rough grit blasted surface. A new method which produces a controlled, 3D surface morphology will be used to both improve bonding and, crucially, enable control of the TBC microstructure. In particular providing a much higher segmentation crack density. Most failures in TBC systems occur at the interface between the topcoat and the bond coat. Interfacial adhesion will be improved by the introduction of nano-crystalline inter-layers. Finally, new processes for the deposition of the TBC will be studied. These include; thin film - LPPS, plasma enhanced CVD, nano-p hase suspension PS and high speed PVD. Unlike EB-PVD, they will enable advanced TBC materials such as alumina based to be used. The project aims to provide significant improvements to TBC systems using a number of innovative steps. It is expected that th is work will not only extend the life of conventional TBC's but also provide the breakthrough necessary to achieve 'next generation' TBC systems.Maintaining a lead in gas turbine technology is strategically important for Europe. The participation of all the key European companies in this sector not only underscores the importance of this project but also ensures that the results will have the widest possible impact and benefit.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences electrochemistry electrolysis
- engineering and technology materials engineering coating and films
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
FP6-2003-AERO-1
See other projects for this call
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Coordinator
JUELICH
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.