Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-06-18

"Generation and Evaluation of ""Next-generation"" Antibody-Toxin-Conjugates for Cancer Therapy"

Objective

Therapeutic antibodies have transformed cancer therapy during the last decade, due to their high selectivity of targeting cancer cells in comparison to standard small molecule chemotherapy. Most recently, the coupling of cellular toxins to therapeutic antibodies has demonstrated an even greater efficacy in the therapy of cancer and the first, highly potent antibody drug conjugate (ADC), Adcetris®, was FDA approved in August 2011.
All ADCs currently in clinical development are generated by chemical conjugation of small molecule toxins to antibodies. This is an inefficient process, as site and ratio of toxin coupling cannot be controlled. In addition, the chemical conjugation involves chemical modification of potentially functional parts of the antibody. This can have negative effects on stability, specificity, CMC properties and the overall structure of the antibody. All this renders ADC manufacturing highly challenging, complicates regulatory procedures, and adds to development time and costs.
The SME consortium has complementary proprietary technologies and proposes to leverage this complementary expertise and know-how for defining novel processes of enzymatically conjugating small molecule toxins to antibodies that allow full control about toxin coupling site and ratio. Due to the high selectivity of enzymatic conjugation and physiologic conjugation conditions, it is expected that more homogeneous ADCs are generated with better CMC properties, higher potency, and at lower cost-of-goods in manufacturing. The consortium members believe that this represents a disruptive technology that will be highly competitive to traditional chemical conjugation, currently dominated by U.S.-based ADC technology companies Seattle Genetics and Immunogen. In addition to novel composition-of-matter IP, important novel know-how for ADC development will be created. Most importantly, better quality and potency of these “next-generation” ADCs will eventually benefit cancer patients.

Fields of science

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

Call for proposal

FP7-SME-2013
See other projects for this call

Coordinator

NBE-THERAPEUTICS AG
EU contribution
€ 422 380,00
Address
HOCHBERGERSTRASSE 60C TECHNOLOGIE PARK BASEL
4057 Basel
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Nordwestschweiz Basel-Stadt
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost
No data

Participants (11)