Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Prediction of Erosion Damages in Hydraulic MAchines

Objective

"Hydraulic turbines can undergo severe damaging during operation, because of low quality water or detrimental flow conditions. Damaging induces maintenance costs and power production losses, and can also endanger safety of installations. Hydropower plants operators and turbine manufacturers are interested in extending overhaul periods by reducing damaging intensity and protecting turbine components with surface treatments. Accurate and reliable prediction of damaging is however missing. The PREDHYMA project aims at developing predictive tools addressing damaging mechanisms and helping engineers to better manage installations’ lifecycle.
Four main damaging mechanisms are encountered in hydraulic machines: hydro abrasive erosion, impacts of gravels and stones, cavitation and impacts of water droplets. They result from complex interactions between fluids and solids. The PREDHYMA project aims at predicting these four mechanisms by means of numerical simulations. Current approaches of damaging model micro-scale interactions between fluid and solid. They are not generalist and require calibration often valid on specific configurations only. Besides they do not really account for the shape evolution of turbine components as damaging develops. The PREDHYMA project will overcome these limitations by introducing a multi-scale approach in space and time. Micro scale simulations will compute damaging rate directly from very detailed and local simulations and will feed macro-scale simulations encompassing full turbine components along their operation lifetime.
PREDHYMA will deal with diverse and challenging topics in numerical simulations: turbulence, cavitation, fluid-structure coupling, and fracture mechanics, at the frontier between fluid and solid mechanics. The project will also tackle challenges in terms of software engineering and High Performance Computing, providing a unique simulation framework dedicated to damaging prediction in fluid-structure interactions."

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2013-ITN
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-ITN - Networks for Initial Training (ITN)

Coordinator

ANDRITZ HYDRO AG
EU contribution
€ 1 068 565,40
Address
OBERNAUERSTRASSE 4
6010 Kriens
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Zentralschweiz Luzern
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (1)

My booklet 0 0