Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Spin-charge conversion and spin caloritronics at hybrid organic-inorganic interfaces

Objetivo

Organic semiconductors are enabling flexible, large-area optoelectronic devices, such as organic light-emitting diodes, transistors, and solar cells. Due to their exceptionally long spin lifetimes, these carbon-based materials could also have an important impact on spintronics, where carrier spins, rather than charges, play a key role in transmitting, processing and storing information. However, to exploit this potential, a method for direct conversion of spin information into an electric signal is indispensable. Spin-charge conversion in inorganic semiconductors and metals has mainly relied on the spin-orbit interaction, a fundamental relativistic effect which couples the motion of electrons to their spins. The spin-orbit interaction causes a flow of spins, a spin current, to induce an electric field perpendicular to both the spin polarization and the flow direction of the spin current. This is called the inverse spin Hall effect (ISHE). We have very recently been able to observe for the first time the inverse spin-Hall effect in an organic conductor. This breakthrough raises important questions for our understanding of spin-charge conversion in materials with intrinsically weak spin-orbit coupling. It also expands dramatically the range of materials and structures available to address some currently not well understood scientific questions in spintronics and opens opportunities for realising novel spintronic devices for spin-based information processing and spin caloritronic energy harvesting that make use of unique properties of hybrid, organic-inorganic structures. The main objective of the proposed research is to take spintronics to a level that inorganic spintronics cannot reach on its own. The project is based on new theoretical and experimental methodologies arising at the interface between two currently disjoint scientific communities, organic semiconductors and inorganic spintronics, and aims to exploit synergies between chemistry, physics and theory.

Convocatoria de propuestas

ERC-2013-SyG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

ERC-SyG - Synergy grant

Investigador principal de referencia

Henning Sirringhaus Prof.

Institución de acogida

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Aportación de la UE
€ 4 216 073,00
Dirección
TRINITY LANE THE OLD SCHOOLS
CB2 1TN Cambridge
Reino Unido

Ver en el mapa

Región
East of England East Anglia Cambridgeshire CC
Tipo de actividad
Higher or Secondary Education Establishments
Investigador principal
Henning Sirringhaus (Prof.)
Contacto administrativo
Liesbeth Krul (Ms.)
Enlaces
Coste total
Sin datos

Beneficiarios (5)