Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Quality Translation by Deep Language Engineering Approaches

Description du projet


Content analytics and language technologies
The goal of QTLeap is to deliver an articulated methodology for machine translation that explores deep language engineering approaches in view of breaking the way to translations of higher quality.

In the last decade, the incremental advancement of mainstream research on Machine Translation (MT) has been obtained by encompassing increasingly sophisticated statistical approaches and fine-grained linguistic features that add to the surface level alignment on which these approaches are ultimately anchored.
It has been ventured recently, in some leading academic and industry circles, that the incremental progress towards quality MT of this path may be asymptotically reaching a ceiling, as more fine-grained distinctions tend to be needed to aim at better translations with fewer gains in terms of quality increase.
The goal of this project is to contribute to a quantum leap in quality MT by pursuing a novel approach that opens the way to higher quality translations and a new cycle of technological advancement.
We build on the complementarity of the two pillars of language technology -- symbolic and probabilistic -- and seek a quantum leap in their hybridization. We explore combinations of them that amplify their strengths and mitigate their drawbacks with a new design for the intertwining of statistical and rule-based MT.
The construction of deep treebanks has progressed to be delivering now the first significant Parallel DeepBanks, where pairs of synonymous sentences from different languages are annotated with their fully-fledged grammatical representations, up to the level of their semantic representation.
The construction of Linked Open Data and other semantic resources, in turn, has progressed now to support impactful application of lexical semantic processing that handles and resolves referential and conceptual ambiguity.
These cutting edge advances permit for the cross-lingual alignment supporting translation to be established at the level of deeper linguistic representation. The deeper the level the less language-specific differences remain among source and target sentences and new chances of success become available for the statistically based transduction.

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-ICT-2013-10
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

CP - Collaborative project (generic)

Coordinateur

FACULDADE DE CIENCIAS DA UNIVERSIDADE DE LISBOA
Contribution de l’UE
€ 766 402,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Participants (7)

Mon livret 0 0