Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Proactive Autonomic Management of Cloud Resources

Description du projet


Software Engineering, Services and Cloud Computing

The main objective of the project "PANACEA" is to provide Proactive Autonomic Management of Cloud Resources as a remedy to the exponentially growing complexity.If you look at the system resources (Internet) at the bottom of the stack, that system resource can be servers, storage, data centres, and network resources, the concept is then to build a level of virtualization of those resources so that any given event is not tied to one box necessarily or to one storage disk. Once you get that kind of leverage, you can build the set of functions that relate to autonomic self-* properties: configuring, healing, optimizing and protecting. The design that you have to have holistically has to deal with the fact that components are going to fail. The aim of a Cloud Computing platform is to support redundant, self-recovering, highly scalable programming models that allow workloads to recover from many inevitable hardware/software failures and monitoring resource use in real time for providing physical and virtual servers, on which the applications can run.It will propose innovative solutions for autonomic management of cloud resources, which will be based on a set of advanced Machine Learning Techniques and virtualization. A Machine Learning (ML) framework will be created for a proactive autonomic management of cloud resources. It will allow predicting the failure time of software, or user applications running on Virtual Machines (VM) and the violation of expected response time of services.To deal with the vast number of possible resources to monitor, our main approach will consider the use of mobile agents, which will move on the cloud, interacting with other agents, reading computing and network sensors, and making autonomous decisions on what to measure, when to report and to whom. Distributed Machine Learning, based on Reinforcement Learning and Neural Networks, will be used to enforce "self-organizing paths".

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-ICT-2013-10
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

CP - Collaborative project (generic)

Coordinateur

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Contribution de l’UE
€ 272 291,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée

Participants (7)

Mon livret 0 0