European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-27

New Outlook on seismic faults: From EARthquake nucleation to arrest

Objetivo

With an average toll of 80.000 deaths per year over the last decade, earthquakes remain one of the most dreadful geohazards. The advancement of earthquake risk assessment and forecasting methods (probability estimates that a mainshock may occur in terms of hypocentre location, magnitude and time) calls for a sound physical basis. The nucleation, propagation and arrest of an earthquake rupture results from the interplay of stress perturbations, micro- to macro-scale friction- and rupture-related processes and fault zone geometrical complexity. Most of the information about these parameters is out of reach of seismic waves and geophysical analysis. Here we aim at enhancing our knowledge of earthquake physics (from nucleation to arrest) by means of a multidisciplinary approach that includes:

1) experiments to investigate earthquake nucleation by reproducing crustal (pressure, temperature, presence of fluids, stress perturbations, etc.) deformation conditions with the most powerful earthquake simulator installed worldwide (SHIVA);

2) experiments to investigate rupture propagation on simulated faults using natural rocks and small-scale analogue models;

3) field studies of exhumed seismogenic sources to quantify the geometrical complexity of natural fault zones;

4) advanced numerical simulation techniques that will integrate the above information and allow up-scaling to natural faults. The numerical models will produce physically-based earthquake simulations that will be compared with high-resolution seismic data.

By reproducing crustal deformation conditions (stress, temperature, fluid pressures, etc.) in the laboratory and by monitoring acoustic emissions, gases, electromagnetic waves, etc., produced by the rock samples during deformation, a by-product of our research will be the systematic investigation of precursory phenomena (seismic, chemical, and electromagnetic) associated to earthquake nucleation processes.

Convocatoria de propuestas

ERC-2013-CoG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

ERC-CG - ERC Consolidator Grants

Institución de acogida

UNIVERSITA DEGLI STUDI DI PADOVA
Aportación de la UE
€ 431 984,10
Dirección
VIA 8 FEBBRAIO 2
35122 Padova
Italia

Ver en el mapa

Región
Nord-Est Veneto Padova
Tipo de actividad
Higher or Secondary Education Establishments
Contacto administrativo
Edda Fassari (Dr.)
Investigador principal
Giulio Di Toro (Prof.)
Enlaces
Coste total
Sin datos

Beneficiarios (4)