Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Engineering Bio-inspired Materials for Biosensing and Regenerative Medicine

Objective

In Naturale CG I propose transformative bioengineering approaches that will overcome severe limitations in current materials in two main areas, namely 1) Biosensing and 2) Regenerative Medicine. A key focus is on understanding and engineering the biomaterial interface using innovative designs and state of the art materials characterisation methods. Firstly I aim to transform the way that we can currently detect disease through innovations in the design and development of nanomaterials-based biosensors that could be used to detect a number of diseases with global implications, such as cancer, malaria, heart failure and tuberculosis. These innovations in biosensor design will involve both building on our existing highly successful work on plasmonic biosensors and also involve the design and development of completely new polymersome and fluorescent based biosensors. Another key aim of Naturale CG is to design first in kind biosensors for the facile detection of microRNAs. Secondly, the goal of regenerating failing organs before the body as a whole is ready to surrender, is now timelier than ever and one in which the design of new bio-inspired materials can play an important role. In Naturale CG I will build on my previous research in the design of 3-dimensional tissue engineering scaffolds and address an important new direction in the engineering of new bio-inspired conducting polymers as tissue engineering materials to promote cardiac tissue regeneration. First-in-field biomaterials-based innovations generated from this programme could enable far more effective regeneration of functional myocardial tissue which has been notoriously difficult to achieve thus far. Whilst I will lead this grant and the research within it, the proposed innovations are truly multidisciplinary in nature and will be accelerated towards clinical translation through the numerous clinical, scientific and industrial collaborations that I have established.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-CoG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-CG - ERC Consolidator Grants

Host institution

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
EU contribution
€ 1 999 460,00
Address
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ London
United Kingdom

See on map

Region
London Inner London — West Westminster
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0