Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Computational modelling of structural batteries

Objective

Competition in consumer electronics has pushed the boundaries of technological development towards miniaturization, with weight/size limitations and increasing power demands being the two most stringent requirements. Although almost all the components of any portable device become smaller, lighter and more powerful by the months, electrochemical technology is far from presenting us with the ideal battery. From a different perspective, the equation mobile device = casing + electronics + battery could be simplified by merging the structural function of the casing with that of the energy source of the battery into a structural battery. This approach would immediately reduce weight and size of our mobile devices.

This project aims at investigating the effect of electrochemical-mechanical interactions on the mechanical performance of structural batteries. Understanding and controlling mechanical degradation in structural batteries is of prime importance given the dual structural-electrical function of these devices. In fact, the main concern when dealing with structural batteries is whether the internal stresses caused by external loads will influence the performance of the battery, and, conversely, whether the functioning of the battery will have a detrimental effect on its mechanical properties. The complexity of these processes can only be addressed with dedicated computational techniques. This project offers a unique opportunity for the design and implementation of the first multiphysics and multiscale computational framework for the analysis of structural batteries. Macroscale processes originating at the level of a basic components will be elucidated through physically-based constitutive laws.

The overall impact of this project will be felt across many research communities. Apart from the energy storage community, the developed tools and procedures will influence research and development related to many fibre-reinforced composites.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-CoG
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-CG - ERC Consolidator Grants

Host institution

TECHNISCHE UNIVERSITEIT DELFT
EU contribution
€ 1 968 053,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0