Skip to main content
European Commission logo
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS
Zawartość zarchiwizowana w dniu 2024-06-18

Computational modelling of structural batteries

Cel

Competition in consumer electronics has pushed the boundaries of technological development towards miniaturization, with weight/size limitations and increasing power demands being the two most stringent requirements. Although almost all the components of any portable device become smaller, lighter and more powerful by the months, electrochemical technology is far from presenting us with the ideal battery. From a different perspective, the equation mobile device = casing + electronics + battery could be simplified by merging the structural function of the casing with that of the energy source of the battery into a structural battery. This approach would immediately reduce weight and size of our mobile devices.

This project aims at investigating the effect of electrochemical-mechanical interactions on the mechanical performance of structural batteries. Understanding and controlling mechanical degradation in structural batteries is of prime importance given the dual structural-electrical function of these devices. In fact, the main concern when dealing with structural batteries is whether the internal stresses caused by external loads will influence the performance of the battery, and, conversely, whether the functioning of the battery will have a detrimental effect on its mechanical properties. The complexity of these processes can only be addressed with dedicated computational techniques. This project offers a unique opportunity for the design and implementation of the first multiphysics and multiscale computational framework for the analysis of structural batteries. Macroscale processes originating at the level of a basic components will be elucidated through physically-based constitutive laws.

The overall impact of this project will be felt across many research communities. Apart from the energy storage community, the developed tools and procedures will influence research and development related to many fibre-reinforced composites.

Zaproszenie do składania wniosków

ERC-2013-CoG
Zobacz inne projekty w ramach tego zaproszenia

Instytucja przyjmująca

TECHNISCHE UNIVERSITEIT DELFT
Wkład UE
€ 1 968 053,00
Adres
STEVINWEG 1
2628 CN Delft
Niderlandy

Zobacz na mapie

Region
West-Nederland Zuid-Holland Delft en Westland
Rodzaj działalności
Higher or Secondary Education Establishments
Kierownik naukowy
Angelo Simone (Dr.)
Kontakt administracyjny
Loes Janssen (Mrs.)
Linki
Koszt całkowity
Brak danych

Beneficjenci (1)