Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-06-18

Trading Quantity for Quality in Machine Learning

Objetivo

Machine learning was born in an era when most datasets were small, low-dimensional, and used carefully hand-crafted features. However, recent years have seen a dramatic change in the nature of typical machine learning tasks: These are now routinely performed on huge, web-scale datasets, with data quantity no longer being a major bottleneck. On the flip side, the large-scale and automated data-gathering methods used to create such massive datasets often go hand-in-hand with mediocre quality of individual data items. This data quality problem can hamper standard learning algorithms, despite the availability of more data. A related issue is the quality of available features: with more data, we are in a position to tackle harder tasks - particularly in AI-related areas such as computer vision and natural language processing. However, it is also becoming increasing hard to hand-craft good features for such tasks, and much recent research is devoted to automatically learn higher-quality, multi-level representations of the data.

The objective of the proposed research is to study how increasing data quantity can be used to improve or compensate for poor data quality, provably and efficiently. In particular, we wish to study how to use large-scale, low-quality datasets, to achieve the same learning performance as if we had a high-quality, yet more moderately sized dataset. We plan to explore several important settings where we believe such a trade-off can be obtained, using a theoretically principled approach. These include (1) Learning deep data representations, which capture complex and high-level features; (2) Learning from incomplete data, where some or even most of the data is missing; and (3) bandit learning and optimization, which capture learning and decision making under uncertainty. Our research plan builds on concrete preliminary results and several novel ideas, which are outlined as part of the proposal.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP7-PEOPLE-2013-CIG
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinador

WEIZMANN INSTITUTE OF SCIENCE
Aportación de la UE
€ 100 000,00
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0