Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS
Contenu archivé le 2024-06-18

Trading Quantity for Quality in Machine Learning

Objectif

Machine learning was born in an era when most datasets were small, low-dimensional, and used carefully hand-crafted features. However, recent years have seen a dramatic change in the nature of typical machine learning tasks: These are now routinely performed on huge, web-scale datasets, with data quantity no longer being a major bottleneck. On the flip side, the large-scale and automated data-gathering methods used to create such massive datasets often go hand-in-hand with mediocre quality of individual data items. This data quality problem can hamper standard learning algorithms, despite the availability of more data. A related issue is the quality of available features: with more data, we are in a position to tackle harder tasks - particularly in AI-related areas such as computer vision and natural language processing. However, it is also becoming increasing hard to hand-craft good features for such tasks, and much recent research is devoted to automatically learn higher-quality, multi-level representations of the data.

The objective of the proposed research is to study how increasing data quantity can be used to improve or compensate for poor data quality, provably and efficiently. In particular, we wish to study how to use large-scale, low-quality datasets, to achieve the same learning performance as if we had a high-quality, yet more moderately sized dataset. We plan to explore several important settings where we believe such a trade-off can be obtained, using a theoretically principled approach. These include (1) Learning deep data representations, which capture complex and high-level features; (2) Learning from incomplete data, where some or even most of the data is missing; and (3) bandit learning and optimization, which capture learning and decision making under uncertainty. Our research plan builds on concrete preliminary results and several novel ideas, which are outlined as part of the proposal.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

FP7-PEOPLE-2013-CIG
Voir d’autres projets de cet appel

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MC-CIG - Support for training and career development of researcher (CIG)

Coordinateur

WEIZMANN INSTITUTE OF SCIENCE
Contribution de l’UE
€ 100 000,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

Aucune donnée
Mon livret 0 0