Skip to main content

Development of Reliable Emission and Atomization Models for Combustor Design

Objective

The SAGE6 demonstration project aims to develop and mature a lean burn combustion system. An essential enabler to development of such technology is an accurate and reliable computational tool for prediction of emissions. Lean burn provides significant benefits in terms of NOx emissions. However, the emissions of CO, UHC and soot limit the operation of the combustor at different conditions. Reliable predictions of emission trends will lead to optimised combustor designs in a cost effective way. Today’s capabilities, however, are still inadequate to produce accurate and reliable predictions in direct support of lean burn system design. The DREAMCODE project aims to develop and improve computational methods that can be used in the design process of low emission combustors. Improved models and methods will be developed to predict emissions accurately and reliably. To that end, the following essential elements of a CFD combustion emission tool will be considered:
1. Detailed chemistry models for jet fuel surrogates are necessary to describe the complicated chemical processes of fuel oxidation and emission formation in the gas phase.
2. Soot models are indispensable to describe the complex physical and chemical phenomena of soot particle formation.
3. Chemistry reduction methods are inevitable to reduce the computational cost of the complex chemistry model for application in CFD codes.
4. Spray break-up models are necessary to model the liquid fuel break-up, which has a dramatic effect on emissions.
5. Turbulence-chemistry interaction models have to account for the effects that occur on length scales which cannot be resolved by the computational mesh.
These 5 models will be improved and integrated in a CFD code for the validation on real aero engine gas turbine combustors.

Field of science

  • /engineering and technology/environmental engineering/energy and fuels/fossil energy/gas
  • /natural sciences/chemical sciences/electrochemistry/electrolysis

Call for proposal

SP1-JTI-CS-2013-01
See other projects for this call

Funding Scheme

JTI-CS - Joint Technology Initiatives - Clean Sky

Coordinator

TECHNISCHE UNIVERSITEIT EINDHOVEN
Address
Groene Loper 3
5612 AE Eindhoven
Netherlands
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 254 726
Administrative Contact
Alfons Bruekers (Mr.)

Participants (3)

RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN
Germany
EU contribution
€ 225 000
Address
Templergraben 55
52062 Aachen
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Heinz Pitsch (Prof.)
KARLSRUHER INSTITUT FUER TECHNOLOGIE
Germany
EU contribution
€ 266 805
Address
Kaiserstrasse 12
76131 Karlsruhe
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Brigitte Humbert (Ms.)
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
United Kingdom
EU contribution
€ 224 317
Address
South Kensington Campus Exhibition Road
SW7 2AZ London
Activity type
Higher or Secondary Education Establishments
Administrative Contact
Shaun Power (Mr.)