Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Development of Reliable Emission and Atomization Models for Combustor Design

Objective

The SAGE6 demonstration project aims to develop and mature a lean burn combustion system. An essential enabler to development of such technology is an accurate and reliable computational tool for prediction of emissions. Lean burn provides significant benefits in terms of NOx emissions. However, the emissions of CO, UHC and soot limit the operation of the combustor at different conditions. Reliable predictions of emission trends will lead to optimised combustor designs in a cost effective way. Today’s capabilities, however, are still inadequate to produce accurate and reliable predictions in direct support of lean burn system design. The DREAMCODE project aims to develop and improve computational methods that can be used in the design process of low emission combustors. Improved models and methods will be developed to predict emissions accurately and reliably. To that end, the following essential elements of a CFD combustion emission tool will be considered:
1. Detailed chemistry models for jet fuel surrogates are necessary to describe the complicated chemical processes of fuel oxidation and emission formation in the gas phase.
2. Soot models are indispensable to describe the complex physical and chemical phenomena of soot particle formation.
3. Chemistry reduction methods are inevitable to reduce the computational cost of the complex chemistry model for application in CFD codes.
4. Spray break-up models are necessary to model the liquid fuel break-up, which has a dramatic effect on emissions.
5. Turbulence-chemistry interaction models have to account for the effects that occur on length scales which cannot be resolved by the computational mesh.
These 5 models will be improved and integrated in a CFD code for the validation on real aero engine gas turbine combustors.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

SP1-JTI-CS-2013-01
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

JTI-CS - Joint Technology Initiatives - Clean Sky

Coordinator

TECHNISCHE UNIVERSITEIT EINDHOVEN
EU contribution
€ 254 726,00
Address
GROENE LOPER 3
5612 AE Eindhoven
Netherlands

See on map

Region
Zuid-Nederland Noord-Brabant Zuidoost-Noord-Brabant
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Participants (3)

My booklet 0 0