Objective
The SAGE6 demonstration project aims to develop and mature a lean burn combustion system. An essential enabler to development of such technology is an accurate and reliable computational tool for prediction of emissions. Lean burn provides significant benefits in terms of NOx emissions. However, the emissions of CO, UHC and soot limit the operation of the combustor at different conditions. Reliable predictions of emission trends will lead to optimised combustor designs in a cost effective way. Today’s capabilities, however, are still inadequate to produce accurate and reliable predictions in direct support of lean burn system design. The DREAMCODE project aims to develop and improve computational methods that can be used in the design process of low emission combustors. Improved models and methods will be developed to predict emissions accurately and reliably. To that end, the following essential elements of a CFD combustion emission tool will be considered:
1. Detailed chemistry models for jet fuel surrogates are necessary to describe the complicated chemical processes of fuel oxidation and emission formation in the gas phase.
2. Soot models are indispensable to describe the complex physical and chemical phenomena of soot particle formation.
3. Chemistry reduction methods are inevitable to reduce the computational cost of the complex chemistry model for application in CFD codes.
4. Spray break-up models are necessary to model the liquid fuel break-up, which has a dramatic effect on emissions.
5. Turbulence-chemistry interaction models have to account for the effects that occur on length scales which cannot be resolved by the computational mesh.
These 5 models will be improved and integrated in a CFD code for the validation on real aero engine gas turbine combustors.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technologyenvironmental engineeringenergy and fuelsliquid fuels
- natural scienceschemical scienceselectrochemistryelectrolysis
- natural sciencescomputer and information sciencescomputational science
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Call for proposal
SP1-JTI-CS-2013-01
See other projects for this call
Funding Scheme
JTI-CS - Joint Technology Initiatives - Clean SkyCoordinator
5612 AE Eindhoven
Netherlands