Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Long-wave Ultrafast Multipurpose Intense Nonlinear-Optical Source

Objective

Mid-infrared laser sources operating in the 3-10 µm wavelength range are of great interest and importance for a wide range of applications that span laser surgery with minimal peripheral damage; infrared sensing applications based on incredibly sensitive and species-selective vibrational finger-printing of molecules; countermeasures against intelligent homing munitions; etc. Recently, the high-field physics and attosecond science community became strongly interested in intense ultrafast sources operating in this notoriously difficult for lasers spectral range, signaling a big potential scientific market. Because of the absence of lasing materials, such sources are based on nonlinear-optical frequency conversion of near-IR pulsed lasers. To date, narrowband tunable high-energy low-intensity pulses from nanosecond Q-switched lasers and micro-Joule-level femtosecond pulses from cumbersome multistage down-conversion schemes driven by 800-nm Ti:sapphire amplifiers have been demonstrated. Project LUMINOS intends to jump-start the era of compact efficient sources operating in the 5-10 µm with at kHz repetition rates, several milli-Joule pulse energy and pulse duration nearing a single optical cycle. This breakthrough implies the development of an unprecedented femtosecond chirped-pulse laser amplifier at 2.1-µm to solve the problems in mid-IR parametric amplification linked to the pump wavelength, conversion efficiency, and amplified bandwidth. We propose to develop and offer for commercialization the first high-intensity and average power Ho-doped femtosecond solid-state amplifier and demonstrate it as a pump source for a mid-IR parametric amplifier. The technical idea and the feasibility proof behind this project arose during the implementation of the ERC project CyFi, in which a multicolor source was built with the longest wavelength component at >3 µm. The latter can be used as a starting point for a deeper infrared conversion proposed to be explored in the PoC scheme.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

ERC-2013-PoC
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

CSA-SA(POC) - Supporting action (Proof of Concept)

Host institution

TECHNISCHE UNIVERSITAET WIEN
EU contribution
€ 150 000,00
Address
KARLSPLATZ 13
1040 Wien
Austria

See on map

Region
Ostösterreich Wien Wien
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0