European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Global existence vs Blow-up in some nonlinear PDEs arising in fluid mechanics

Objetivo

"The present project aims at studying qualitative properties of some nonlinear Partial Differential Equations arising in fluid mechanics. It is divided into 3 parts.

Part 1 and Part 2 address the study of some classes of 1D hydrodynamic models, namely, the inviscd Surface Quasi-Gesotrophic equation (SQG) and the generalized Constantin-Lax-Majda (gCLM) equation. Both models are closely related to the 3D Euler equation written in terms of the vorticity and are therefore mathematically interesting. More specifically, Part 1 is devoted to the study of particular solutions of the inviscid (SQG) equation which blow up in finite time. Those particular solutions turn out to satisfy a 1D non local equation which are a particular case of (gCLM) equation. Therefore, we focus on that 1D equation and we prove finite time blow-up by using methods coming from harmonic analysis and the so-called ""nonlocal maximal principle"" or the ""modulus of continuity method"" introduced by Kiselev, Nazarov and Volberg.

In contrast to Part 1, Part 2 is devoted to the proof of a global existence theorem for another particular case of (gCLM) equation. Unlike Part 1 where the ""modulus of continuity method"" will be used only in one step of the proof, Part 2 is completly based on the use of the ""modulus of continuity method"".

Finally, Part 3 deals with the Muskat problem which describes the interface between two fluids of different density but same viscosity. This part is centered around a global existence result due to Constantin, Cordoba, Gancedo, Strain and is based on the use of a new formulation of the Muskat problem recently obtained by Lazar."

Convocatoria de propuestas

FP7-PEOPLE-2013-IEF
Consulte otros proyectos de esta convocatoria

Coordinador

AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS
Aportación de la UE
€ 166 336,20
Dirección
CALLE SERRANO 117
28006 Madrid
España

Ver en el mapa

Región
Comunidad de Madrid Comunidad de Madrid Madrid
Tipo de actividad
Research Organisations
Contacto administrativo
Ana María De La Fuente (Ms.)
Enlaces
Coste total
Sin datos