Skip to main content
An official website of the European UnionAn official EU website
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary
Content archived on 2024-06-18

Evolution of eukaryotic intron splicing

Objective

Introns are non-coding intervals that interrupt the coding
sequences of eukaryotic genes. Intron removal is performed
by a complicated molecular machinery, called the
spliceosome, concomitantly with gene transcription. Introns
and the splicing machinery (or at least their traces) are
found in every sequenced eukaryotic genome. Moreover, many
introns are found at homologous positions across different
kingdoms, suggesting that some originate in the earliest
eukaryotes.

Introns are largely devoid of function, yet in humans (and
mammals in general), they make up more than~40% of the
genome. The most obvious evolutionary advantage of the
interrupted coding sequences is that they increase
functional complexity by enabling alternate assemblies.
Introns provide a powerful source of variations for natural
selection in many other ways, since splicing is tightly
coupled with transcription and export from the nucleus, and
intronic sequences frequently harbor regulatory elements.

The proposed project aims at developing bioinformatics tools
and mathematical models that help understanding randomness
and natural selection that shape exon-intron architecture in
different eukaryotic lineages. In particular, we will
investigate intron turnover in fast-evolving genes,
selective constraints on intron length and mechanisms of
intron gain on a large scale, using annotated whole genomes.
In addition to providing new insights into the ways
evolution affects gene structure, the developed
methods will be useful to produce better annotations of
coding regions and functional intronic elements.

Fields of science

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.

Call for proposal

FP7-PEOPLE-2013-IIF
See other projects for this call

Coordinator

HUN-REN SZEGEDI BIOLOGIAI KUTATOKOZPONT
EU contribution
€ 190 113,60
Address
TEMESVARI KORUT 62
6726 Szeged
Hungary

See on map

Region
Alföld és Észak Dél-Alföld Csongrád
Activity type
Research Organisations
Administrative Contact
Miklós Erdélyi (Dr.)
Links
Total cost
No data