Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
Contenido archivado el 2024-05-28

Merging Lie perturbation theory and Taylor Differential algebra to address space debris challenges

Objetivo

In an increasingly saturated space about the Earth, aerospace engineers confront the mathematical problem of accurately predicting the position of Earth’s artificial satellites. This is required not only for the correct operation of satellites, but also for preserving the integrity of space assets and the services they provide to citizens. Operational satellites are threatened by the possibility of a collision with a defunct satellite, but most probably by the impact with other uncontrolled man-made space objects—all of them commonly called space debris.

The present international concern in space situational awareness (SSA) has produced a renewed interest in analytical and semi-analytical theories for the fast and efficient propagation of catalogs of data. Within this framework, it is widely accepted by experts that perturbation theory based on Lie transforms is the most accurate and efficient method to derive semi-analytical propagators. In a semi-analytical approach, the highest frequencies of the motion are filtered analytically via averaging procedures, allowing the numerical integration of the averaged system to proceed with very long step sizes. Then, the short-period terms can be recovered analytically.

Another fundamental need in SSA is the efficient management of uncertainties that characterize the motion of orbiting objects. To this aim Taylor differential algebraic (DA) and Taylor model (TM) techniques have been transferred in the last decade from beam physics field to astrodynamics. These techniques, by allowing high order expansions of the flow of the dynamics and rigorous estimate of the associated approximation errors, have shown to be a powerful tool for managing uncertainties both in initial conditions and model parameters.

The focus of this project is to merge Lie perturbation theory and DA and TM techniques with the goal of applying the resulting methodology to practical problems in SSA.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

FP7-PEOPLE-2013-IEF
Consulte otros proyectos de esta convocatoria

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MC-IEF - Intra-European Fellowships (IEF)

Coordinador

UNIVERSIDAD DE LA RIOJA
Aportación de la UE
€ 230 036,60
Dirección
AVENIDA DE LA PAZ 93
26006 La Rioja
España

Ver en el mapa

Región
Noreste La Rioja La Rioja
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

Sin datos
Mi folleto 0 0