Objetivo In recent years, there has been an increased effort by scientists to obtain new composite materials with extreme properties. Inspired by natural and biological processes, scientists have proposed the use of hierarchical architectures (i.e. assembly of structural components) spanning several length scales from nanometer to centimeter sizes. Depending each time on the desired properties of the composite material, optimization with respect to its stiffness, weight, density, toughness and other properties is carried out. In the present subject, the interest is in magneto-mechanical coupling and tailored instabilities. Hierarchical materials, such as magnetorheological elastomers (MREs) which combine magnetic particles (at the scale of nanometers and micrometers) embedded in a soft polymeric non-magnetic matrix, give rise to a coupled magneto-mechanical response at the macroscopic (order of millimeters and centimeters) scale when they are subjected to combined magneto-mechanical external stimuli. These composite materials can deform at very large strains due to the presence of the soft polymeric matrix without fracturing. From an unconventional point of view, a remarkable property of these materials is that while they can become unstable by combined magneto-mechanical loading, their response is well controlled in the post-instability regime. This, in turn, allows us to try to operate these materials in this critically stable region, similar to most biological systems. These instabilities can lead to extreme responses such as wrinkles (for haptic applications), actively controlled stiffness (for cell-growth) and acoustic properties with only marginal changes in the externally applied magnetic fields. Unlike the current modeling of hierarchical composites, MREs require the development of novel experimental techniques and advanced coupled nonlinear magneto-mechanical models in order to tailor the desired macroscopic instability response at finite strains. Ámbito científico ciencias socialeseconomía y empresagestión y empresasgestión de la innovacióningeniería y tecnologíaingeniería de materialescompuestosciencias naturalesciencias físicasacústicaciencias naturalesmatemáticasmatemáticas purasgeometríaingeniería y tecnologíaingeniería de materialescristal líquido Programa(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Tema(s) ERC-StG-2014 - ERC Starting Grant Convocatoria de propuestas ERC-2014-STG Consulte otros proyectos de esta convocatoria Régimen de financiación ERC-STG - Starting Grant Coordinador CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS Aportación neta de la UEn € 1 499 206,25 Dirección Rue michel ange 3 75794 Paris Francia Ver en el mapa Región Ile-de-France Ile-de-France Paris Tipo de actividad Research Organisations Enlaces Contactar con la organización Opens in new window Sitio web Opens in new window Participación en los programas de I+D de la UE Opens in new window Red de colaboración de HORIZON Opens in new window Otras fuentes de financiación € 0,00 Beneficiarios (1) Ordenar alfabéticamente Ordenar por aportación neta de la UE Ampliar todo Contraer todo CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS Francia Aportación neta de la UEn € 1 499 206,25 Dirección Rue michel ange 3 75794 Paris Ver en el mapa Región Ile-de-France Ile-de-France Paris Tipo de actividad Research Organisations Enlaces Contactar con la organización Opens in new window Sitio web Opens in new window Participación en los programas de I+D de la UE Opens in new window Red de colaboración de HORIZON Opens in new window Otras fuentes de financiación € 0,00