Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Geometry and Anomalous Dynamic Growth of Elastic instabiliTies

Descripción del proyecto

Los estudios teóricos y computacionales de las inestabilidades elásticas mejoran la comprensión

Las deformaciones elásticas —cambios reversibles en los materiales debido a las fuerzas que actúan sobre ellos— son omnipresentes en los materiales de la naturaleza y artificiales. A veces, cuando los materiales sufren deformaciones en las que la fuerza deformadora es relativamente grande en relación con la fuerza restauradora, pueden desarrollar las denominadas inestabilidades elásticas y surgen nuevas formas. Esto puede verse en las arrugas de la piel o en la rotura de un paraguas con viento fuerte. En el proyecto GADGET, financiado por el Consejo Europeo de Investigación, se elaborará un marco teórico con el que abordar las lagunas en nuestra comprensión de las inestabilidades elásticas. Se utilizará un sistema modelo, una cáscara elástica presurizada sometida a una deformación geométricamente grande, para evaluar el papel que desempeñan la geometría y la dinámica.

Objetivo

Elastic instabilities are ubiquitous, from the wrinkles that form on skin to the ‘snap-through’ of an umbrella on a windy day. The complex patterns such instabilities make, and the great speed with which they develop, have led to a host of technological and scientific applications. However, recent experiments have revealed significant gaps in our theoretical understanding of such instabilities, particularly in the roles played by geometry and dynamics. I will establish a group to develop and validate a theoretical framework within which these results can be understood. Central to my approach is an appreciation of the crucial role of geometry in the pattern formation and dynamics of elastic instabilities.

As a starting point, I will consider the model problem of a pressurized elastic shell subject to a geometrically large deformation. This system develops either wrinkles or a stress-focusing instability depending on the internal pressure. As such, this is a natural paradigm with which to understand geometrical features of deformation relevant across length scales from deformed viruses to the subduction zones in Earth’s tectonic plates. My team will combine theoretical and computational approaches with tabletop experiments to determine a new set of shell deformations that are generically observed in contradiction of the classic ‘mirror buckling’. Understanding why these new shapes emerge will transform our perception of shell instabilities and provide new fundamental building blocks with which to model them. These ideas will also be used to transform our understanding of a number of other, previously mysterious, elastic instabilities of practical interest. Turning our focus to the dynamics of instabilities such as the snap-through of shells, we will show that accounting for geometry is again crucial. The new insight gained through this project will increase our ability to control elastic instabilities, benefitting a range of technological and scientific applications.

Régimen de financiación

ERC-STG - Starting Grant

Institución de acogida

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Aportación neta de la UEn
€ 1 361 077,00
Dirección
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
Reino Unido

Ver en el mapa

Región
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 361 077,00

Beneficiarios (1)