Objective Acute myeloid leukemia (AML) remains a devastating disease, while progress in genetic characterization and nanomedical approaches promise a new era of individualized treatments. To prioritize genetic aberrations in AML for therapeutic targeting and to develop a pipeline for personalized nanomedicines I will i) establish a biobank of transplantable primary human AML xenotransplants, ii) fully characterize the genetic landscape of these leukemias, iii) establish the functional hierarchy of driver and passenger mutations in these human leukemia models, iv) develop highly efficient nanoparticle-siRNA formulations that allow in vivo delivery of siRNA to primary AML blasts, and v) design double specific siRNA-based nanomedicines for improved efficacy and tolerability. The expertise of my research team and my institutional settings and collaborations provide a unique platform to achieve these objectives. My access to freshly isolated leukemia blasts allows efficient establishment of a biobank for AML xenotransplant models. In fact, we can serially transplant and expand primary AML cells in immunodeficient mice. The biobank will be an invaluable resource for pharmaceutical product development. I have extensive experience in the genetic characterization and functional evaluation of leukemic cells, which I will apply to the newly generated human AML models. I will use inducible lentiviral approaches to genetically modify human leukemia cells and observe the functional effects in vivo, to identify the relevant targets for leukemogenicity of each primary AML model. Most importantly, I can formulate nanoparticle-siRNA systems that show unprecedented complete uptake into human leukemia cells in vivo and open the door for specific inhibition of any gene. These established tools provide me with the unique ability to develop a pipeline for individualized nanomedicines that will improve AML treatment and will also have broad applications beyond leukemia treatment. Fields of science medical and health sciencesbasic medicinepharmacology and pharmacypharmaceutical drugsmedical and health sciencesmedical biotechnologynanomedicinemedical and health sciencesmedical biotechnologycells technologiesstem cellsmedical and health sciencesbasic medicinepharmacology and pharmacypharmacokineticsmedical and health sciencesclinical medicineoncologyleukemia Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-StG-2014 - ERC Starting Grant Call for proposal ERC-2014-STG See other projects for this call Funding Scheme ERC-STG - Starting Grant Coordinator MEDIZINISCHE HOCHSCHULE HANNOVER Net EU contribution € 1 499 750,00 Address Carl-neuberg-strasse 1 30625 Hannover Germany See on map Region Niedersachsen Hannover Region Hannover Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all MEDIZINISCHE HOCHSCHULE HANNOVER Germany Net EU contribution € 1 499 750,00 Address Carl-neuberg-strasse 1 30625 Hannover See on map Region Niedersachsen Hannover Region Hannover Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00