European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Big Splash: Efficient Simulation of Natural Phenomena at Extremely Large Scales

Descripción del proyecto

Simulaciones informáticas innovadoras de fenómenos naturales

Las simulaciones informáticas son cruciales en diversos ámbitos. Sin embargo, es imposible calcular simulaciones detalladas a gran escala, ya que los fenómenos importantes dependen de la intrincada asociación de los detalles a pequeña escala y el comportamiento a gran escala. El cálculo por fuerza bruta de estos fenómenos es poco práctico y las técnicas de adaptación actuales son demasiado caras, rudimentarias o delicadas para captar inestabilidades sutiles a escalas pequeñas. El equipo del proyecto Big Splash, financiado con fondos europeos, propone dos métodos. El primero combina valores numéricos y la forma para explorar la desvinculación cuidadosa de la dinámica y la geometría y desarrollar técnicas que combinen soluciones analíticas a pequeña escala con algoritmos numéricos a gran escala. El segundo manipula datos de simulación a gran escala acelerando significativamente el cálculo mediante novedosos métodos de reducción de dimensiones y compresión de datos.

Objetivo

Computational simulations of natural phenomena are essential in science, engineering, product design, architecture, and computer graphics applications. However, despite progress in numerical algorithms and computational power, it is still unfeasible to compute detailed simulations at large scales. To make matters worse, important phenomena like turbulent splashing liquids and fracturing solids rely on delicate coupling between small-scale details and large-scale behavior. Brute-force computation of such phenomena is intractable, and current adaptive techniques are too fragile, too costly, or too crude to capture subtle instabilities at small scales. Increases in computational power and parallel algorithms will improve the situation, but progress will only be incremental until we address the problem at its source.

I propose two main approaches to this problem of efficiently simulating large-scale liquid and solid dynamics. My first avenue of research combines numerics and shape: I will investigate a careful de-coupling of dynamics from geometry, allowing essential shape details to be preserved and retrieved without wasting computation. I will also develop methods for merging small-scale analytical solutions with large-scale numerical algorithms. (These ideas show particular promise for phenomena like splashing liquids and fracturing solids, whose small-scale behaviors are poorly captured by standard finite element methods.) My second main research direction is the manipulation of large-scale simulation data: Given the redundant and parallel nature of physics computation, we will drastically speed up computation with novel dimension reduction and data compression approaches. We can also minimize unnecessary computation by re-using existing simulation data. The novel approaches resulting from this work will undoubtedly synergize to enable the simulation and understanding of complicated natural and biological processes that are presently unfeasible to compute.

Régimen de financiación

ERC-STG - Starting Grant

Institución de acogida

INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA
Aportación neta de la UEn
€ 1 500 000,00
Dirección
Am Campus 1
3400 Klosterneuburg
Austria

Ver en el mapa

Región
Ostösterreich Niederösterreich Wiener Umland/Nordteil
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 500 000,00

Beneficiarios (1)