Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Homeostatic balancing of excitation and inhibition in vivo

Objective

Balanced excitation and inhibition is a fundamental principle of neural circuit function, and perturbed excitation/inhibition (E/I) balance has been linked to diseases such as epilepsy, autism and schizophrenia. Maintaining E/I balance within normal bounds depends in part on homeostatic plasticity, in which neurons compensate for deviations in activity levels by adjusting their responsiveness to excitation and inhibition. Yet despite recent progress in elucidating molecular mechanisms underlying homeostatic plasticity in reduced preparations, little is known about such mechanisms in the intact brain.

I propose to address this gap using a simple and genetically tractable neural circuit that I recently characterized. In Drosophila, Kenyon cells (KCs), the neurons underlying olfactory associative memory, receive excitation from projection neurons (PNs) as well as feedback inhibition from a single identified neuron (‘APL’). The balance between these two forces maintains sparse odour coding in KCs, which enhances the odour-specificity of associative memory by reducing overlap between odour representations.

Preliminary evidence indicates that KCs adapt to prolonged disruption of E/I balance, providing a ground-breaking opportunity to use the powerful genetic tools of Drosophila to uncover the molecular mechanisms underlying homeostatic balancing of excitation and inhibition in vivo in a defined circuit that mediates a sophisticated behaviour.

Specific aims:
1. Characterize homeostatic plasticity in the PN-KC-APL circuit.
2. Identify genes up- and down-regulated in response to perturbations of E/I balance.
3. Determine role of candidate genes and cellular mechanisms in homeostatic plasticity.

Establishing the PN-KC-APL circuit as a novel model system for homeostatic plasticity will reveal for the first time the molecular mechanisms underlying homeostatic balancing of excitation and inhibition in the intact brain.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2014-STG

See all projects funded under this call

Host institution

THE UNIVERSITY OF SHEFFIELD
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 500 000,00
Address
FIRTH COURT WESTERN BANK
S10 2TN SHEFFIELD
United Kingdom

See on map

Region
Yorkshire and the Humber South Yorkshire Sheffield
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 500 000,00

Beneficiaries (1)

My booklet 0 0