Objective
According to biologists, there is a need for quantitative models that are able to cope with the complexity of problems arising in the field of life sciences. Here, complexity refers to the interplay between various scales that are not clearly separate. The great challenge of the MESOPROBIO project is to analyse complex PDE models for biological propagation phenomena at the mesoscale. By analogy with the kinetic theory of gases, this is an intermediate level of description between the microscale (individual-based models) and the macroscale (parabolic reaction-transport-diffusion equations). The specific feature common to all the models involved in the project is the local heterogeneity with respect to a structure variable (velocity, phenotypical trait, age) which requires new mathematical methods. I propose to push analysis beyond classical upscaling arguments and to track the local heterogeneity all along the analysis.
The biological applications are: concentration waves of bacteria, evolutionary aspects of structured populations (with respect to dispersal ability or life-history traits), and anomalous diffusion. The mathematical challenges are: multiscale analysis of PDE having different properties in different directions of the phase space, including nonlocal terms (scattering, competition), and possibly lacking basic features of reaction-diffusion equations such as the maximum principle. The outcomes are: travelling waves, accelerating fronts, approximation of geometric optics, nonlocal Hamilton-Jacobi equations, optimal foraging strategies and evolutionary dynamics of phenotypical traits. Emphasis will be placed on quantitative results with strong feedback towards biology.
The project will be conducted in Lyon, a French hub for mathematical biology and hyperbolic equations. There will be close interaction with biologists in order to establish the most appropriate questions to answer. Several collaborations in Europe (UK, Austria) will be developed.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences microbiology bacteriology
- natural sciences mathematics applied mathematics mathematical physics
- natural sciences biological sciences evolutionary biology
- natural sciences physical sciences optics
- natural sciences mathematics pure mathematics mathematical analysis differential equations partial differential equations
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2014-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.