Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Nanoporous Asymmetric Poly(Ionic Liquid) Membrane

Objective

Nanoporous polymer membranes (NPMs) play a crucial, irreplaceable role in fundamental research and industrial usage, including separation, filtration, water treatment and sustainable environment. The vast majority of advances concentrate on neutral or weakly charged polymers, such as the ongoing interest on self-assembled block copolymer NPMs. There is an urgent need to process polyelectrolytes into NPMs that critically combine a high charge density with nanoporous morphology. Additionally, engineering structural asymmetry/gradient simultaneously in the membrane is equally beneficial, as it would improve membrane performance by building up compartmentalized functionalities. For example, a gradient in pore size forms high pressure resistance coupled with improved selectivity. Nevertheless, developing such highly charged, nanoporous and gradient membranes has remained a challenge, owing to the water solubility and ionic nature of conventional polyelectrolytes, poorly processable into nanoporous state via common routes.
Recently, my group first reported an easy-to-perform production of nanoporous polyelectrolyte membranes. Building on this important but rather preliminary advance, I propose to develop the next generation of NPMs, nanoporous asymmetric poly(ionic liquid) membranes (NAPOLIs). The aim is to produce NAPOLIs bearing diverse gradients, understand the unique transport behavior, improve the membrane stability/sustainability/applicability, and finally apply them in the active fields of energy and environment. Both the currently established route and the newly proposed ones will be employed for the membrane fabrication.
This proposal is inherently interdisciplinary, as it must combine polymer chemistry/engineering, physical chemistry, membrane/materials science, and nanoscience for its success. This research will fundamentally advance nanoporous membrane design for a wide scope of applications and reveal unique physical processes in an asymmetric context.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2014-STG

See all projects funded under this call

Host institution

STOCKHOLMS UNIVERSITET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 000 000,00
Address
UNIVERSITETSVAGEN 10
10691 Stockholm
Sweden

See on map

Region
Östra Sverige Stockholm Stockholms län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 000 000,00

Beneficiaries (2)

My booklet 0 0