Description du projet
Un changement révolutionnaire de la vision par ordinateur
Pendant des années, la vision par ordinateur s’est efforcée d’égaler les capacités extraordinaires du système visuel humain, sans jamais y parvenir. Dans cette optique, le projet HOMOVIS, financé par l’UE, proposera une initiative visionnaire destinée à combler le fossé entre la vision artificielle et la perception humaine. Plus précisément, il exploite la puissance d’une remarquable architecture à trois couches, qui reflète l’efficacité du système visuel humain. Cette architecture se compose d’une couche de bas niveau, qui identifie les caractéristiques critiques de l’image, d’une couche de niveau intermédiaire, qui permet la désocclusion et l’achèvement des limites, et d’une couche de haut niveau, responsable de la reconnaissance des objets. En intégrant des prieurs de haut niveau dans des modèles variationnels de bas niveau, HOMOVIS proposera un cadre mathématique unifié. Ses avancées mathématiques propulseront le domaine au-delà des modèles variationnels conventionnels.
Objectif
Since more than 50 years, computer vision has been a very active research field but it is still far away from the abilities of the human visual system. This stunning performance of the human visual system can be mainly contributed to a highly efficient three-layer architecture: A low-level layer that sparsifies the visual information by detecting important image features such as image gradients, a mid-level layer that implements disocclusion and boundary completion processes and finally a high-level layer that is concerned with the recognition of objects.
Variational methods are certainly one of the most successful methods for low-level vision. However, it is very unlikely that these methods can be further improved without the integration of high-level prior models. Therefore, we propose a unified mathematical framework that allows for a natural integration of high-level priors into low-level variational models. In particular, we propose to represent images in a higher-dimensional space which is inspired by the architecture for the visual cortex. This space performs a decomposition of the image gradients into magnitude and direction and hence performs a lifting of the 2D image to a 3D space. This has several advantages: Firstly, the higher-dimensional embedding allows to implement mid-level tasks such as boundary completion and disocclusion processes in a very natural way. Secondly, the lifted space allows for an explicit access to the orientation and the magnitude of image gradients. In turn, distributions of gradient orientations – known to be highly effective for object detection – can be utilized as high-level priors. This inverts the bottom-up nature of object detectors and hence adds an efficient top-down process to low-level variational models.
The developed mathematical approaches will go significantly beyond traditional variational models for computer vision and hence will define a new state-of-the-art in the field.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN.
- sciences naturellesinformatique et science de l'informationintelligence artificiellevision par ordinateurreconnaissance d’images
- sciences naturellessciences physiquesoptiquemicroscopiemicroscopie à super-résolution
- sciences naturellesinformatique et science de l'informationintelligence artificiellevision par ordinateurdétection d’objets
- sciences naturellesinformatique et science de l'informationintelligence artificielleapprentissage automatiqueapprentissage profond
- sciences naturellesmathématiquesmathématiques appliquéesmodèle mathématique
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Programme(s)
Thème(s)
Régime de financement
ERC-STG - Starting GrantInstitution d’accueil
8010 Graz
Autriche