European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

3D Printing of Cell Laden Biomimetic Materials and Biomolecules for Joint Regeneration

Description du projet

Des implants biomimétiques obtenus par bio-impression 3D pour régénérer le cartilage et l’os

La fabrication additive, également appelée impression 3D, a révolutionné la production de produits complexes dans de nombreux domaines. La technologie de bio-impression 3D utilise des bio-encres avec des cellules vivantes pour produire des structures imitant des tissus ou des organes naturels. Le projet JointPrinting, financé par le Conseil européen de la recherche, s’appuiera sur ce procédé pour générer des constructions biomimétiques anatomiquement précises pouvant être utilisées pour régénérer à la fois le cartilage et l’os d’une articulation malade. Les constructions intégreront un biomatériau chargé de cellules souches, un échafaudage polymère imprimé en 3D, des composants de la matrice extracellulaire du cartilage et des facteurs de croissance chondrogéniques, ainsi que le facteur de croissance endothélial vasculaire. La modélisation par éléments finis sera utilisée pour déterminer les caractéristiques structurelles optimales.

Objectif

Osteoarthritis (OA) is a serious disease of the joints affecting nearly 10% of the population worldwide. Realising an efficacious therapeutic solution for treating OA remains one of the greatest challenges in the field of orthopaedic medicine. This proposal envisions a future where 3D bioprinting systems located in hospitals will provide ‘off-the-shelf’, patient-specific biological implants to treat diseases such as OA. To realise this vision, this project will use 3D bioprinting to generate anatomically accurate, biomimetic constructs that can be used to regenerate both the cartilage and bone in a diseased joint. The first aim of this proposal is to print a mesenchymal stem cell laden biomaterial that is both immediately load bearing and can facilitate the regeneration of articular cartilage in vivo, such that the bioprinted construct will not require in vitro maturation prior to implantation. Mechanical function will be realised by integrating an interpenetrating network hydrogel into a 3D printed polymeric scaffold, while chondro-inductivity will be enhanced by the spatially-defined incorporation of cartilage extracellular matrix components and chondrogenic growth factors into the bioprinted construct. The second aim of the proposal is to use 3D bioprinting to create a cell-free, composite construct to facilitate regeneration of the bony region of a large osteochondral defect, where vascularization will be accelerated by immobilizing spatial gradients of vascular endothelial growth factor into the implant. The third aim of the proposal is to scale-up the proposed 3D bioprinted construct to enable whole joint regeneration. Finite element modelling will be used determine the optimal structural characteristics of the scaled-up implant for it to fulfil its required mechanical function. If successful, such an implant would form the basis of a truly transformative therapy for treating degenerative joint disease.

Régime de financement

ERC-COG - Consolidator Grant

Institution d’accueil

THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD, OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Contribution nette de l'UE
€ 1 999 700,00
Adresse
COLLEGE GREEN TRINITY COLLEGE
D02 CX56 DUBLIN 2
Irlande

Voir sur la carte

Région
Ireland Eastern and Midland Dublin
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 1 999 700,00

Bénéficiaires (1)